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Abstract. In this paper, we examine the locality condition for non-splitting and de-

termine the level of uniqueness of limit models that can be recovered in some stable, but

not superstable, abstract elementary classes. In particular we prove:

Theorem 1.2. Suppose that K is an abstract elementary class satisfying

1. the joint embedding and amalgamation properties with no maximal model of car-

dinality µ.

2. stability in µ.

3. κ∗µ(K) < µ+.

4. continuity for non-µ-splitting (i.e. if p ∈ ga-S(M) and M is a limit model wit-

nessed by 〈Mi | i < α〉 for some limit ordinal α < µ+ and there exists N ≺M0 so

that p � Mi does not µ-split over N for all i < α, then p does not µ-split over N).

For θ and δ limit ordinals < µ+ both with cofinality ≥ κ∗µ(K), if K satisfies symmetry

for non-µ-splitting (or just (µ, δ)-symmetry), then, for any M1 and M2 that are (µ, θ)

and (µ, δ)-limit models over M0, respectively, we have that M1 and M2 are isomorphic

over M0.

Note that no tameness is assumed.

§1. Introduction. Because the main test question for developing a classi-
fication theory for abstract elementary classes (AECs) is Shelah’s Categoricity
Conjecture [1, Problem D.1], the development of independence notions for AECs
has often started with an assumption of categoricity ([11, 21, 20] and others).
Consequently, the independence relations that result are superstable or stronger
(see, for instance, good λ-frames and the superstable prototype [13, Example
II.3.(A)]). However, little progress has been made to understand stable, but not
superstable AECs. A notable exception is the work on κ-coheir of Boney and
Grossberg [3], which only requires stability in the guise of ‘no weak κ-order prop-
erty.’ In this paper, we add to the understanding of strictly stable AECs with a
different approach and under different assumptions than [3]. In particular, our
analysis uses towers and the standard definition of Galois-stability. Moreover, we
work without assuming any of the strong locality assumptions (tameness, type
shortness, etc.) of [3]. We hope that this work will lead to further exploration
in this context.

Received by the editors December 29, 2022.
This material is based upon work while the first author was supported by the National

Science Foundation under Grant No. DMS-1402191 and DMS-2137465.

1



2 WILL BONEY AND MONICA M. VANDIEREN

The main tool in our analysis is a tower, which was first conceived to study
superstable AECs (see, for instance [14] or [15]). The ‘right analogue’ of super-
stability in AECs has been the subject of much research. Shelah has commented
that this notion suffers from ‘schizophrenia,’ where several equivalent concepts in
first-order seem to bifurcate into distinct notions in nonelementary settings; see
the recent Grossberg and Vasey [7] for a discussion of the different possibilities
(and a suprising proof that they are equivalent under tameness).

Common to much analysis of superstable AECs is the uniqueness of limit
models. Uniqueness of limit models was first proved to follow from a categoricity
assumption in [10, 12, 14, 15, 16]. Later, µ-superstability, which was isolated
by Grossberg, VanDieren, and Villaveces [6, Assumption 2.8(4)], was shown to
imply uniqueness of limit models under the additional assumption of µ-symmetry
[17]. µ-superstability was modeled on the local character characterization of
superstability in first-order and was already known to follow from categoricity
[14]. The connection between µ-symmetry and structural properties of towers
[17] inspired recent research on µ-superstable classes: [18, 19]. Moreover, years
of work culminating in the series of papers [14, 15, 16, 17, 18, 19] has led to the
extraction of a general scheme for proving the uniqueness of limit models (note
that amalgamation is generally assumed in these papers, but this is not true of
[14, 15, 16]). In this paper we witness the power of this new scheme by adapting
the technology developed in [17] to cover µ-stable, but not µ-superstable classes.
We suspect that this new technology of towers will likely be used to answer
other problems in classification theory (in both first order and non-elementary
settings).

This paper focuses on the question to what degree the uniqueness of limit
models can be recovered if we assume the class is Galois-stable in µ, but not
µ-superstable, by refocusing the question from “Are all (µ, α)-limit models iso-
morphic (over the base)?” to “For which α, β < µ+ are (µ, α)-limit models and
(µ, β)-limit models isomorphic (over the base)?” Based on first-order results
(summarized in [6, Section 2]), we have the following conjecture.

Conjecture 1.1. Suppose K is an AEC with µ-amalgamation and is µ-stable.
The set

{α < µ+ : cf(α) = α and (µ, α)-limit models are isomorphic to (µ, µ)-limit models}

is a non-trivial interval of regular cardinals. Moreover, the minimum of this set,
denoted by κ∗µ(K), is an important measure of the complexity of K.

Our main result (restated from the abstract) proves this conjecture under
certain assumptions.

Theorem 1.2. Suppose that K is an abstract elementary class satisfying

1. the joint embedding and amalgamation properties with no maximal model
of cardinality µ.

2. stabilty in µ.
3. κ∗µ(K) < µ+.
4. continuity for non-µ-splitting (i.e. if p ∈ ga-S(M) and M is a limit model

witnessed by 〈Mi | i < α〉 for some limit ordinal α < µ+ and there exists N
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so that p �Mi does not µ-split over N for all i < α, then p does not µ-split
over N).

For θ and δ limit ordinals < µ+ both with cofinality ≥ κ∗µ(K), if K satisfies
symmetry for non-µ-splitting (or just (µ, δ)-symmetry), then, for any M1 and
M2 that are (µ, θ) and (µ, δ)-limit models over M0, respectively, we have that
M1 and M2 are isomorphic over M0.

Assumption 2.3 collects these assumptions together, and we discuss them fol-
lowing that statement. In this statement, the “measure of complexity” from
Conjecture 1.1 is κ∗µ(K), a generalization of the first-order κ(T ) (see Definition
2.1). An important feature of this work is that it explores the underdeveloped
field of strictly stable AECs.

We end with a short comment contextualizing this paper within the body of
work on limit models. The general arguments for investigating the uniqueness
of limit models have appeared before (see [15, 6]). One use is that they give
a version of saturated models without dealing with smaller models and give a
sense of how difficult it is to create saturated models. Many works of AECs
take a ‘local approach’ of analyzing Kλ (the models of size λ) to derive structure
on Kλ+ (see [13, Chapter II] or [11] for the most prominent examples). Be-
cause not even the existence of models of size < λ is assumed, Galois saturation
(which quantifies over smaller models) cannot be used, and limit models have
become the standard substitute. Moreover, we expect that limit models will
take on a greater importance in the context of strictly stable AECs, especially
those without assumption of tameness. Of the various analogues for AECs (see
[7, Theorem 1.2]), most have seen extensive analysis, but only in the context
of tameness. One of the remaining notions (solvability; see [13, Chapter IV])
seems to have no weakening to the strictly stable context. What remains are
µ-superstability and the uniqueness of limit models. Thus, it is reasonable to
assume that understanding strictly stable AECs will require understanding the
connection between ‘µ-stability’ (Assumption 2.3 here) and limit models. The-
orem 1.2 is a step towards this understanding.

After circulating this paper but before publication, Vasey and Mazari-Armida
used our results to make further progress in the field. Vasey used Theorem
1.2 in his work to characterize stable AECs [22], especially in terms of unions
of sufficiently saturated models being saturated [22, Theorem 11.11]. Addi-
tionally, Vasey [22, Theorem 3.7] gives some natural conditions for Assumption
2.3.(4) below, which he calls the weak continuity of splitting. On the other hand,
Mazari-Armida identified naturally occuring strictly stable AECs. By analyzing
limit models of different cofinalities, he demonstrated that the class of torsion-
free abelian groups and the class of finitely Butler groups, both with the pure
subgroup relation, are strictly stable AECs [9].

Section 2 reviews key definitions and facts with Assumption 2.3 being the key
hypotheses throughout the paper. Section 3 discusses the notion of relatively full
towers. Section 4 discusses reduced towers and proves the key lemma, Theorem
4.5. Section 5 concludes with a proof of the main theorem, Theorem 1.2.

We would like to thanks Rami Grossberg and Sebastien Vasey for comments
on earlier drafts of this paper that led to a vast improvement in presentation.
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§2. Background. We refer the reader to [1], [5], [6], [15], and [17] for def-
initions and notations of concepts such as Galois-stability, µ-splitting, etc. We
reproduce a few of the more specialized definitions and results here.

Grossberg, VanDieren, and Villaveces [6, Assumption 2.8] isolated a notion
they call ‘µ-superstability’1 by examining consequences of categoricity from [10]
and [14]. The key feature in this assumption is that there are no infinite splitting
chains (as forbidden in [14, Theorem 2.2.1]). We weaken µ-superstability by only
forbidding long enough splitting chains. How long is ‘long enough’ is measured
by κ∗µ(K), which is a relative of [5, Definition 4.3] and universal local character
[3, Definition 3.5]. Following [3], we add the ‘*’ to this symbol to denote that
the chain is required to have the property that Mi+1 is universal over Mi.

Definition 2.1. We define κ∗µ(K) to be the minimal, regular κ < µ+ so that
for every increasing and continuous sequence 〈Mi ∈ Kµ | i ≤ α〉 with α ≥ κ
regular which satisfies for every i < α, Mi+1 is universal over Mi, and for every
non-algebraic p ∈ ga-S(Mα), there exists i < α such that p does not µ-split over
Mi. If no such κ exists, we say κ∗µ(K) =∞.

We call κ∗µ(K) the ‘universal local character for µ-nonsplitting for K,’ or sim-
ply the ‘universal local character’ for short when µ and K are fixed.

In [5, Theorem 4.13], Grossberg and VanDieren show that if K is a tame sta-
ble abstract elementary class satisfying the joint embedding and amalgamation
properties with no maximal models, then there exists a single bound for κ∗µ(K)
for all sufficiently large µ in which K is µ-stable. This proof works by consider-
ing the χ-order property of Shelah. We can also give a direct bound assuming
tameness.

Proposition 2.2. Let K be an AEC with amalgamation that is λ-stable and
(λ, µ)-tame. Then κ∗µ(K) ≤ λ.

Note that the proof does not require the extensions to be universal.

Proof. Let 〈Mi ∈ Kµ : i ≤ α〉 be an increasing, continuous chain with
cf(α) ≥ λ and p ∈ ga-S(Mα). By [10, Claim 3.3.(1)] and λ-stability, there is
N0 ≺ Mα of size λ such that p does not λ-split over N0. By tameness, p does
not µ-split over N0. By the cofinality assumption, there is i∗ < α such that
N0 ≺Mi∗ . By monotonicity, p does not µ-split over Mi∗ . a

This definition motivates our main assumption. We use this collection only
to group these items together and will explicitly list Assumption 2.3 when it is
part of a result’s hypothesis.

Assumption 2.3.

1. K satisfies the joint embedding and amalgamation properties with no max-
imal model of cardinality µ.

2. K is stable in µ.
3. κ∗µ(K) < µ+.

1We do not use this here, but the definition of µ-superstability strengthens Assumption 2.3
by requiring that κ∗µ(K) be ω.
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4. K satisfies (limit) continuity for non-µ-splitting (i.e. if p ∈ ga-S(M) and
M is a limit model witnessed by 〈Mi | i < θ〉 for some limit ordinal θ < µ+

and there exists N so that p �Mi does not µ-split over N for all i < θ, then
p does not µ-split over N).

A few comments on the assumption is in order. Note that tameness is not
assumed in this paper. Amalgamation is commonly assumed in the study of
limit models, although [14, 15, 16] replace it with more nuanced results about
amalgamation bases. Stability in µ is necessary for the conclusion of Theorem
1.2 to make sense; otherwise, there are no limit models! We have argued (both
in principle and in practice) that varying the local character cardinal is the right
generalization of superstability to stability in this context. However, we have
kept the “continuity cardinal” to be ω; this is the content of Assumption 2.3.(4).
This seems necessary for the arguments2. It seems reasonable to hope that some
failure of continuity for non-splitting will lead to a nonstructure result, but this
has not yet been achieved.

The assumptions are (trivially) satisfied in any superstable AEC and, there-
fore, any categorical AEC. However, in this context, the result is already known.
For a new example, we look to the context of strictly stable homogeneous struc-
tures as developed in Hyttinen [8, Section 1]. In the homogeneous contexts,
Galois types are determined by syntactic types. Armed with this, Hyttinen
studies the normal syntactic notion of nonsplitting under a stable, unsuperstable
hypothesis [8, Assumption 1.1], and shows that syntactic splitting satisfies con-
tinuity and (more than) the universal local character of syntactic nonsplitting
is ℵ1.3 It is easy to see that the syntactic version of nonsplitting implies our
nonsplitting, which already implies κ∗µ(K) = ℵ1. The following argument shows
that, if N is limit over M , the converse holds as well, which is enough to get
the limit continuity for our semantic definition of splitting. Since the context
of homogeneous model theory is very tame, we don’t worry about attaching a
cardinal to non-splitting because they are all equivalent.

Suppose that N is a limit model over M , witnessed by 〈Mi | i < α〉, and
p ∈ ga-S(M) syntactically splits over M . Then, since Galois types are syntactic,
there are b, c ∈ N such that ga-tp(b/M) = ga-tp(c/M) and, for an appropriate
φ, φ(x, b,m) ∧ ¬φ(x, c,m) ∈ p. We can find β, β′ < α such that b ∈ Nβ and
c ∈ Nβ′ . Since b and c have the same type, we can find an amalgam N∗ � Nβ
and f : Nα →M N∗ such that f(b) = c. Since N is universal over Nβ′ , we
can find h : N∗ →N ′β

N . This gives us an isomorphism h ◦ f : Nβ ∼= h(f(Nβ))

and we claim that this witnesses the semantic version splitting: c ∈ Nβ′ , so
c = h(c) = h(f(b)) ∈ h(f(Nβ)) and, thus, ¬φ(x, c,m) ∈ p � h(f(Nβ)). On
the other hand, φ(x, c,m) = h ◦ f(φ(x, b,m)) ∈ h ◦ f(p � Nβ). Thus, we have
witnessed h ◦ f(p � Nβ) 6= p � h(f(Nβ)).

Note if κ∗µ(K) = µ, then the conclusion of Theorem 1.2 is uninteresting, but
the results still hold: any two limit models whose lengths have the same cofinality

2The first author claimed in the discussion following [2, Lemma 9.1] that only long continuity
was necessary. However, after discussion with Sebastien Vasey, this seems to be an error.

3It shows that it is at most ℵ1. However, if it were ℵ0, the class would be superstable,
contradicting the assumption.
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are isomorphic on general grounds. Also, we assume joint embedding, etc. only
in Kµ. However, to simplify presentation, we work as though these properties
held in all of K and, thus, we work inside a monster model. This will allow us to
write ga-tp(a/M) rather than ga-tp(a/M ;N) and witness Galois type equality
with automorphisms. The standard technique of working inside of a (µ, µ+)-limit
model can translate our proofs to ones not using a monster model.

Under these assumptions, it is possible to construct towers. This is the key
technical tool in this construction. Towers were introduced in Shelah and Villave-
ces [14] and expanded upon in [15] and subsequent works.

Recall that, if I is well-ordered, then it has a successor function which we
will denote +1 (or +I1 if necessary). Also, we typically restrict our attention to
well-ordered I.

Definition 2.4 ([15, Definition I.5.1]).

1. A tower indexed by I in Kµ is a triple T = 〈M̄, ā, N̄〉 where
• M̄ = 〈Mi ∈ Kµ | i ∈ I〉 is an increasing sequence of limit models;
• ā = 〈ai ∈Mi+1\Mi | i+ 1 ∈ I〉 is a sequence of elements;
• N̄ = 〈Ni ∈ Kµ | i + 1 ∈ I〉 such that Ni ≺ Mi with Mi universal over
Ni; and

• ga-tp(ai/Mi) does not µ-split over Ni.
2. A tower T = 〈M̄, ā, N̄〉 is continuous iff M̄ is, i. e., Mi = ∪j<iMj for all

limit i ∈ I.
3. K∗µ,I is the collection of all towers indexed by I in Kµ.

Note that continuity is not required of all towers.
We will switch back and forth between the notation K∗µ,α where α is an ordinal

and K∗µ,I where I is a well ordered set (of order type α) when it will make the
notation clearer. When we deal with relatively full towers, we will find the
notation using I to be more convenient for book-keeping purposes.

For β < α and T = (M̄, ā, N̄) ∈ K∗µ,α we write T � β for the tower made

up of the sequences M̄ � β := 〈Mi | i < β〉, ā � β := 〈ai | i + 1 < β〉, and
N̄ � β := 〈Ni | i+ 1 < β〉.

We will construct increasing chains of towers. Here we define what it means
for one tower to extend another:

Definition 2.5. For I a sub-ordering of I ′ and towers (M̄, ā, N̄) ∈ K∗µ,I and

(M̄ ′, ā′, N̄ ′) ∈ K∗µ,I′ , we say

(M̄, ā, N̄) ≤ (M̄ ′, ā′, N̄ ′)

if ā = ā′ � I, N̄ = N̄ ′ � I, and for i ∈ I, Mi �K M ′i and whenever M ′i is a
proper extension of Mi, then M ′i is universal over Mi. If for each i ∈ I, M ′i is
universal over Mi we will write (M̄, ā, N̄) < (M̄ ′, ā′, N̄ ′).

For γ a limit ordinal < µ+ and 〈Ij | j < γ〉 a sequence of well ordered
sets with Ij a sub-ordering of Ij+1, if 〈(M̄ j , ā, N̄) ∈ K∗µ,Ij | j < γ〉 is a <-

increasing sequence of towers, then the union T of these towers is determined by
the following:

• for each β ∈
⋃
j<γ Ij , Mβ :=

⋃
β∈Ij ; j<γM

j
β
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• the sequence 〈aβ | ∃(j < γ) β + 1, β ∈ Ij〉, and
• the sequence 〈Nβ | ∃(j < γ) β + 1, β ∈ Ij〉

is a tower in K∗µ,⋃j<γ Ij , provided that K satisfies the continuity property for

non-µ-splitting and that
⋃
j<γ Ij is well ordered. Note that it is our desire to

take increasing unions of towers that leads to the necessity of the continuity
property.

We also need to recall a few facts about directed systems of partial extensions
of towers that are implicit in [15]. These are helpful tools in the inductive
construction of towers and are used in other work (see, e.g., [17, Facts 2 and
3]): Fact 2.6 will get us through the successor step of inductive constructions of
directed systems, and Fact 2.7 describes how to pass through the limit stages.
An explicit proof of Fact 2.7 appears as [17, Fact 3], and we provide a proof of
Fact 2.6 below. Two important notes:

• These facts do not require that the towers be continuous.
• The work in [15] does not assume amalgamation, so more care had to be

taken in working with large limit models (in place of the monster model)
and towers made of amalgamation bases. The amalgamation assumption
in this (and other) papers significantly simplifies the situation.

Fact 2.6 ([15]). Suppose T is a tower in K∗µ,α and T ′ is a tower of length
β < α with T � β < T ′, if f ∈ AutMβ

(C) and M ′′β is a limit model universal over

Mβ such that ga-tp(aβ/M
′′
β ) does not µ-split over Nβ and f(

⋃
i<βM

′
i) ≺K M ′′β ,

then the tower T ′′ ∈ K∗µ,β+1 defined by f(T ′) concatenated with the model M ′′β ,

element aβ and submodel Nβ is an extension of T � (β + 1).

Proof. This is a routine verification from the definitions. T ′′ � β is isomor-
phic to the tower T ′ and we are given the required nonsplitting and that, for i <
β, f(M ′i) ≺M ′′β , so we have that T ′′ ∈ K∗µ,β+1. Similarly, f T � β, so T � β < T ′
implies T � β < T ′′ � β. To extend this to T � (β + 1) < T ′′ � (β + 1) = T ′′, we
note that M ′′β is universal over Mβ by assumption. a

Fact 2.7 ([15]). Fix T ∈ K∗µ,α for α a limit ordinal. Suppose 〈T i ∈ K∗µ,i | i <
α〉 and 〈fi,j | i ≤ j < α〉 form a directed system of towers. Suppose

• each T i extends T � i
• fi,j �Mi = idMi

• M i+1
i+1 is universal over fi,i+1(M i

i ).

Then there exists a direct limit T α and mappings 〈fi,α | i < α〉 to this system so
that T α ∈ K∗µ,α, T α extends T , and fi,α �Mi = idMi

.

Finally, to prove results about the uniqueness of limit models, we will addi-
tionally need to assume that non-µ-splitting satisfies a symmetry property over
limit models. We refine the definition of symmetry from [17, Definition 3] for
non-µ-splitting; this localization only requires symmetry to hold when M0 is
(µ, δ)-limit over N .

Definition 2.8. Fix µ ≥ LS(K) and δ a limit ordinal < µ+. We say that an
abstract elementary class exhibits (µ, δ)-symmetry for non-µ-splitting if whenever
models M,M0, N ∈ Kµ and elements a and b satisfy the conditions 1-4 below,
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then there exists M b a limit model over M0, containing b, so that ga-tp(a/M b)
does not µ-split over N . See Figure 1.

1. M is universal over M0 and M0 is a (µ, δ)-limit model over N .
2. a ∈M\M0.
3. ga-tp(a/M0) is non-algebraic and does not µ-split over N .
4. ga-tp(b/M) is non-algebraic and does not µ-split over M0.

N

M0 M

b

a

M b

Figure 1. A diagram of the models and elements in the defini-
tion of (µ, δ)-symmetry. We assume the type ga-tp(b/M) does
not µ-split over M0 and ga-tp(a/M0) does not µ-split over N .
Symmetry implies the existence of M b a limit model over M0

so that ga-tp(a/M b) does not µ-split over N .

Note that (µ, δ)-symmetry is the same as (µ, cf δ)-symmetry.

§3. Relatively Full Towers. One approach to proving the uniqueness of
limit models is to construct a continuous relatively full tower of length θ, and
then conclude that the union of the models in this tower is a (µ, θ)-limit model.
In this section we confirm that this approach can be carried out in this context,
even if we remove continuity along the relatively full tower.

Definition 3.1 ([14, Definition 3.2.1]). For M a (µ, θ)-limit model, let

St(M) :=

 (p,N)

∣∣∣∣∣∣∣∣∣∣
N ≺K M ;
N is a (µ, θ)-limit model;
M is universal over N ;
p ∈ ga-S(M) is non-algebraic
and p does not µ-split over N.


Elements of St(M) are called strong types. Two strong types (p1, N1) ∈ St(M1)
and (p2, N2) ∈ St(M2) are parallel iff for every M ′ of cardinality µ extending
M1 and M2 there exists q ∈ ga-S(M ′) such that q extends both p1 and p2 and q
does not µ-split over N1 nor over N2.
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Definition 3.2 (Relatively Full Towers). Suppose that I is a well-ordered set.
Let (M̄, ā, N̄) be a tower indexed by I such that each Mi is a (µ, σ)-limit model.
For each i, let 〈Mγ

i | γ < σ〉 witness that Mi is a (µ, σ)-limit model.
The tower (M̄, ā, N̄) is full relative to (Mγ

i )γ<σ,i∈I iff

1. there exists a cofinal sequence 〈iα | α < θ〉 of I of order type θ such that
there are µ · ω many elements between iα and iα+1 and

2. for every γ < σ and every (p,Mγ
i ) ∈ St(Mi) with iα ≤ i < iα+1, there

exists j ∈ I with i ≤ j < iα+1 such that (ga-tp(aj/Mj), Nj) and (p,Mγ
i )

are parallel.

The following proposition will allow us to use relatively full towers to produce
limit models. The fact that relatively full towers yield limit models was first
proved in [15] and in [6] and later improved in [4, Proposition 4.1.5]. We notice
here that the proof of [4, Proposition 4.1.5] does not require that the tower be
continuous and does not require that κ∗µ(K) = ω. We provide the proof for
completeness.

Proposition 3.3 (Relatively full towers provide limit models). Let θ be a limit
ordinal < µ+ satisfying θ = µ · θ. Suppose that I is a well-ordered set as in Def-
inition 3.2.(1).

Let (M̄, ā, N̄) ∈ K∗µ,I be a tower made up of (µ, σ)-limit models, for some fixed

σ with κ∗µ(K) ≤ cf(σ) < µ+. If (M̄, ā, N̄) ∈ K∗µ,I is full relative to (Mγ
i )i∈I,γ<σ,

then M :=
⋃
i∈IMi is a (µ, θ)-limit model over Mi0 .

Proof. Because the sequence 〈iα | α < θ〉 is cofinal in I and θ = µ · θ, we can
rewrite M :=

⋃
i∈IMi =

⋃
β<θMiβ =

⋃
α<θ

⋃
δ<µMiµα+δ

.
For α < θ and δ < µ, notice

Miµα+δ+1
realizes every type over Miµα+δ

.(1)

To see this take p ∈ ga-S(Miµα+δ
). By our assumption that cf(σ) ≥ κ∗µ(K), p does

not µ-split over Mγ
iµα+δ

for some γ < σ. Therefore (p,Mγ
iµα+δ

) ∈ St(Miµα+δ
).

By definition of relatively full towers, there is an ak with iµα+δ ≤ k < iµα+δ+1 so
that (ga-tp(ak/Mk), Nk) and (p,Mγ

iµα+δ
) are parallel. Because Miµα+δ

≺K Mk,

by the definition of parallel strong types, it must be the case that ak |= p.
By a back and forth argument we can conclude from (1) that Miµα+µ is uni-

versal over Miµα . Thus M is a (µ, θ)-limit model.
To see the details of the back-and-forth argument mentioned in the previ-

ous paragraph, first translate (1) to the terminology of [1]: (1) witnesses that⋃
β<µMiµα+β

is 1-special over Miµα . Then, refer to the proof of Lemma 10.5 of

[1].
a

§4. Reduced Towers. The proof of the uniqueness of limit models from
[10, 6, 15, 16] is two dimensional. In the context of towers, the relatively full
towers are used to produce a (µ, θ)-limit model, but to conclude that this model
is also a (µ, ω)-limit model, a <-increasing chain of ω-many continuous towers
of length θ + 1 is constructed. We adapt this construction to prove Theorem
1.2. Instead of creating a chain of ω-many towers, we produce a chain of δ-many
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towers, and instead of each tower in this chain being continuous, we only require
that these towers are continuous at limit ordinals of cofinality at least κ∗µ(K).

The use of towers should be compared with the proof uniqueness of limit
models in [13, Section II.4] (details are given in [2, Section 9]). Both proofs create
a ‘square’ of models, but do so in a different way. The proof here will proceed
by starting with a 1-dimensional tower of models and then, in the induction
step, extend this tower to fill out the square. In contrast, the induction step
of [13, Lemma II.4.8] adds single models at a time. This seems like a minor
distinction (or even just a difference in how the induction step is carried out),
but there is a real distinction in the resulting squares. In [13], the construction
is ‘symmetric’ in the sense that θ and δ are treated the same. However, in the
proof presented here, this symmetry is broken and one could ‘detect’ which side
of the square was laid out initially by observing where continuity fails.

In [6, 15, 16, 17], the continuity of the towers is achieved by restricting the
construction to reduced towers, which under the stronger assumptions of [6, 15,
16, 17] are shown to be continuous. We take this approach and notice that
continuity of reduced towers at certain limit ordinals can be obtained with the
weaker assumptions of Theorem 1.2, in particular κ∗µ(K) < µ+.

Definition 4.1. A tower (M̄, ā, N̄) ∈ K∗µ,α is said to be reduced provided that

for every (M̄ ′, ā, N̄) ∈ K∗µ,α with (M̄, ā, N̄) ≤ (M̄ ′, ā, N̄) we have that for every
i < α,

(∗)i M ′i ∩
⋃
j<α

Mj = Mi.

The proofs of the following three results about reduced towers only require that
the class K be stable in µ and that µ-splitting satisfies the continuity property.
Although [14] works under stronger assumptions than we currently, none of these
results use anything beyond Assumption 2.3. In particular, κ∗µ(K) = ω holds in
[14], but is not used.

Fact 4.2 ([14, Theorem 3.1.13]). Let K satisfy Assumption 2.3. There exists
a reduced <-extension of every tower in K∗µ,α.

Fact 4.3 ([14, Theorem 3.1.14]). Let K satisfy Assumption 2.3. Suppose 〈(M̄, ā, N̄)γ ∈
K∗µ,α | γ < β〉 is a <-increasing and continuous sequence of reduced towers such
that the sequence is continuous in the sense that for a limit γ < β, the tower
(M̄, ā, N̄)γ is the union of the towers (M̄, ā, N̄)ζ for ζ < γ. Then the union of
the sequence of towers 〈(M̄, ā, N̄)γ ∈ K∗µ,α | γ < β〉 is itself a reduced tower.

In fact the proof of Fact 4.3 gives a slightly stronger result which allows us to
take the union of an increasing chain of reduced towers of increasing index sets
and conclude that the union is still reduced.

Fact 4.4 ([6, Lemma 5.7]). Let K satisfy Assumption 2.3. Suppose that (M̄, ā, N̄) ∈
K∗µ,α is reduced. If β < α, then (M̄, ā, N̄) � β is reduced.

The following theorem is related to [17, Theorem 3], which additionally as-
sumes that κ∗µ(K) = ω; in other words it assumes K µ-superstable. Instead, we
allow for strict stability (that is, κ∗µ(K) to be uncountable) at the cost of only
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guaranteeing continuity at limits of large cofinality. In particular, the proof is
similar to the proof of (a) → (b) in [17, Theorem 3], but we crucially allow our
towers to be discontinuous at γ where cf(γ) < κ∗µ(K). We provide the details
where the proof differs.

Theorem 4.5. Suppose K satisfies Assumption 2.3. Let α be an ordinal and
δ be a limit ordinal so that κ∗µ(K) ≤ cf(δ) < α. If K satisfies (µ, δ)-symmetry

for non-µ-splitting and (M̄, ā, N̄) ∈ K∗µ,α is reduced, then the tower (M̄, ā, N̄) is
continuous at δ (i.e., Mδ =

⋃
β<δMβ).

Proof. Suppose the theorem is false. Then we can find a reduced tower
T := (M̄, ā, N̄) ∈ K∗µ,α that is a counterexample of minimal length at δ in the
sense that:

1. Mδ 6= ∪i<δMi and
2. if (M̄ ′, ā′, N̄ ′) ∈ K∗µ,α′ is reduced and discontinuous at δ, then α ≤ α′.

Notice that Fact 4.4 implies that α = δ + 1. Let b ∈ Mδ\
⋃
i<δMi witness the

discontinuity of the tower at δ.
By Fact 4.2 and Fact 4.3, we can build T i = (M̄ i, āi, N̄ i) ∈ K∗µ,δ for i ≤ δ

such that T 0 = T � δ and 〈T i | i ≤ δ〉 is a <-increasing, continuous chain. By
δ-applications of Fact 4.2 in between successor stages of the construction, we can
require that for β < δ

M i+1
β is a (µ, δ)-limit over M i

β

and consequently M i+1
β is a (µ, δ)-limit over Nβ .

(2)

Let Mδ
diag :=

⋃
i<δ, β<δ

M i
β . Figure 2 is an illustration of these models.

There are two cases depending on whether b is in Mδ
diag or not. Both cases

lead to a contradiction of our assumption that T is reduced.
Case 1: b ∈Mδ

diag

The first case will contradict our assumption that (M̄, ā, N̄) is reduced. We
have that T δ is an extension of T � δ and that M δ

diag contains b. Let Mδ
δ be an

extension of M δ
diag that is also a universal extension of Mδ. Then T δ_〈M δ

δ 〉 is

an extension of T . Since b ∈ M δ
diag, there is some j < δ so b ∈ Mδ

j . Because T
is reduced, we have that

Mδ
j ∩

⋃
i<α

Mi = Mj .

Notice that the M δ
j ∩Mδ on the LHS contains b, but the RHS does not contain

b, a contradiction.
Case 2: b /∈M δ

diag

Then ga-tp(b/M δ
diag) is non-algebraic. Consider the sequence 〈M̌i | i < δ〉 defined

by M̌i := M i
i if i is a successor and M̌i :=

⋃
j<iM

j
j for i a limit ordinal. Notice

that (2) implies that this sequence witnesses that M δ
diag is a (µ, δ)-limit model.

Because Mδ
diag is a (µ, δ)-limit model, by our assumption that cf(δ) ≥ κ∗µ(K)

and monotonicity of non-splitting, there exists a successor ordinal i∗ < δ so that

ga-tp(b/M δ
diag) does not µ-split over M i∗

i∗ .(3)
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N0

Ni

M0 M1 . . .Mi Mi+1 . . .
⋃
k<δ

Mk Mδ(M̄, ā, N̄)

M1
0 . . .M1

i M1
i+1M1

1 . . .
⋃
l<δ

M1
l(M̄, ā, N̄)1

...
...

...
...

M j
0 . . .M j

i M j
i+1 . . .

⋃
l<δM

j
l(M̄, ā, N̄)j

M j+1
0 M j+1

i M j+1
i+1 . . .

⋃
l<δM

j+1
l

(M̄, ā, N̄)j+1

...
...

...
...

b
aia1

M δ
diag

Figure 2. (M̄, ā, N̄) and the towers (M̄, ā, N̄)j extending
(M̄, ā, N̄) � δ.

Our next step in Case (2) is to consider the tower formed by the diagonal elements
in Figure 2. In particular, let T diag be the sequence (M i

i , ai, Ni)i<δ. We claim
that T diag ∈ K∗µ,δ and that T diag extends T � δ.

We will now use T diag to construct a tower containing b that extends T � δ.
First we find an approximation, T b, which is a tower of length i∗+1 that contains
b and extends T diag � (i∗+ 2). Then through a directed system of mappings, we
move this tower so that the result is as desired.

To define T b, first notice that by (2), M i∗

i∗ is a (µ, δ)-limit over Ni∗ . Now,

referring to the Figure 1, apply (µ, δ)-symmetry to ai∗ standing in for a, M i∗

i∗

representing M0, Ni∗ as N , M δ
diag as M , and b as itself. We can conclude that

there exists M b containing b, a limit model over M i∗

i∗ , for which ga-tp(ai∗/M
b)

does not µ-split over Ni∗ . Define the tower T b ∈ K∗µ,i∗+2 by the sequences

ā � (i∗ + 1), N̄ � (i∗ + 1) and M̄ ′ with M ′j := M j
j for j ≤ i∗ and M ′i∗+1 := M b.

Notice that T b is an extension of T diag � (i∗ + 2) containing b.

Next, we will explain how we can use this tower to find a tower T̊ δ ∈ K∗µ,δ
extending T diag with b ∈

⋃
j<δ M̊

δ
j . This will be enough to contradict our

assumption that T was reduced.
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We want to build 〈T̊ j , fj,k | i∗ + 2 ≤ j ≤ k ≤ δ〉 a directed system of towers
so that for j ≥ i∗ + 2

1. T̊ i∗+2 = T b
2. T̊ j ∈ K∗µ,j for j ≤ δ
3. T diag � j ≤ T̊ j for j ≤ δ
4. fj,k(T̊ j) ≤ T̊ k � j for j ≤ k < δ

5. fj,k �M
j
j = idMj

j
j ≤ k < δ

6. M̊ j+1
j+1 is universal over fj,j+1(M̊ j

j ) for j < δ

7. b ∈ M̊ j
i∗+1 for j ≤ δ

8. ga-tp(fj,k(b)/Mk
k ) does not µ-split over M i∗

i∗ for j < k < δ.

Construction: We will define this directed system by induction on k, with
i∗ + 2 ≤ k ≤ α. The base and successor case are exactly as in the proof of
Theorem 5 of [17]. The only difference in the construction here is at limit stages
in which T diag is not continuous. Therefore we will concentrate on the details
of the construction for stage k and k+ 1 where k < δ is a limit ordinal for which
T diag is discontinuous at k.

Construction, Case 1: k is limit where T diag is discontinuous.

First, let T̀ k and 〈f̀j,k | i∗ + 2 ≤ j < k〉 be a direct limit of the system defined
so far. We use the`notation since these are only approximations to the tower
and mappings that we are looking for. We will have to take some care to find a
direct limit that contains b in order to satisfy Condition 7 of the construction.
By Fact 2.7 and our induction hypothesis, we may choose this direct limit so
that for all j < k

f̀j,k �M
j
j = idMj

j
.

Consequently M̀α
j := f̀j,k(M̊ j

j ) is universal over M j
j , and

⋃
j<k M̀

k
j is a limit

model witnessed by Condition 6 of the construction. Additionally, the tower T̀ k
composed of the models M̀k

j , extends T diag � k.
We will next show that for every j < k,

ga-tp(f̀i∗+2,k(b)/M j
j ) does not µ-split over M i∗

i∗ .(4)

To see this, recall that for every j < k, by the definition of a direct limit,

f̀i∗+2,k(b) = f̀j,k(fi∗+2,j(b)). By Condition 8 of the construction, we know

ga-tp(fi∗+2,j(b)/M
j
j ) does not µ-split over M i∗

i∗ .

Applying f̀j,k to this implies ga-tp(f̀i∗+2,k(b)/M j
j ) does not µ-split over M i∗

i∗ ,

establishing (4).

Because M j+1
j+1 is universal over M j

j by construction, we can apply the conti-

nuity of non-splitting to (4), yielding

ga-tp(f̀i∗+2,k(b)/
⋃
j<k

M j
j ) does not µ-split over M i∗

i∗ .(5)

Because f̀i∗+2,k fixes M i∗+1
i∗+1 , ga-tp(b/M i∗+1

i∗+1 ) = ga-tp(f̀i∗+2,k(b)/M i∗+1
i∗+1 ). We

can then apply the uniqueness of non-splitting extensions (see [15, Theorem

I.4.12]) to (5) to see that ga-tp(f̀i∗+2,k(b)/
⋃
j<kM

j
j ) = ga-tp(b/

⋃
j<kM

j
j ). Thus
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we can fix g an automorphism of the monster model fixing
⋃
j<kM

j
j so that

g(f̀i∗+2,k(b)) = b.

We will then define T̊ k to be the tower g(T̀ k), and the mappings for our

directed system will be fj,k := g ◦ f̀j,k for all i∗ + 2 ≤ j < k.

Notice that by our induction hypothesis we have that b ∈ M̊ i∗+2
i∗+1 . Then, by

definition of a direct limit we have f̀i∗+2,k(b) ∈ M̀k
i∗+1. Therefore g(f̀i∗+2,k(b)) =

b ∈ M̊k
i∗+1, satisfying Condition 7 of the construction. Furthermore for all j < k,

we have that fj,k(b) = b. Therefore by (3) and monotonicity of non-splitting,
Condition 8 of the construction holds.

Notice that T diag being discontinuous at k does not impact this stage of the
construction since we only require that T̊ k be a tower of length k and therefore
T̊ k need not contain models extending Mk

k . The discontinuity plays a role at
the next stage of the construction.
Construction, Case 2: k + 1 is successor of limit where T diag is discontin-

uous.
Suppose that T diag is discontinuous at k and that T̊ k ∈ K∗µ,k has been defined.

By our choice of i∗, we have ga-tp(b/
⋃
l<αM

l
l ) does not µ-split over M i∗

i∗ . So
in particular by monotonicity of non-splitting, we notice:

ga-tp(b/Mk+1
k ) does not µ-split over M i∗

i∗ .(6)

Using the definition of towers (i.e. Mk+1
k is a (µ, δ)-limit overNk and ga-tp(ak/M

k+1
k )

does not µ-split over Nk) and the choice of i∗, we can apply (µ, δ)-symmetry to

ak, Mk+1
k ,

⋃
l<δM

l
l , b and Nk which will yield M b

k a limit model over Mk+1
k

containing b so that ga-tp(ak/M
b
k) does not µ-split over Nk (see Figure 3).

Nk

Mk+1
k

⋃
l<δM

l
l

b

ak

M b
k

Figure 3. A diagram of the application of (µ, δ)-symmetry in
the successor stage of the directed system construction in the
proof of Theorem 4.5. We have ga-tp(b/

⋃
l<δM

l
l ) does not µ-

split over Mk+1
k and ga-tp(ak/M

k+1
k ) does not µ-split over Nk.

Symmetry implies the existence of M b
k a limit model over Mk+1

k .

so that ga-tp(ak/M
b) does not µ-split over Nk.
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Notice that M b
k has no relationship to T̊ k. In particular, it does not contain⋃

l<k M̊
l
l . Fix M ′ to be a model of cardinality µ extending both

⋃
l<k M̊

l
l and

Mk+1
k . Since M b

k is a limit model over Mk+1
k which is a limit model over Mk

k ,

there exits f : M ′ → Mk+1
k with f = idMk

k
so that M b

k is also universal over

f(
⋃
l<k M̊

l
l ). Because ga-tp(b/Mk

k ) does not µ-split over M i∗

i∗ and f fixes Mk
k ,

we know that ga-tp(f(b)/Mk
k ) does not µ-split over M i∗

i∗ . But because f(b) and

b both realize the same types over M i∗+1
i∗+1 , we can conclude by the uniqueness

of non-splitting extensions that ga-tp(f(b)/Mk
k ) = ga-tp(b/Mk

k ); so there is g ∈
AutMk

k
(C) with g(f(b)) = b. Since M b

k is universal over Mk
k and b ∈M b

k , we can

choose g so that g(f(M ′)) ≺K M b
k .

Take M̊k+1
k to be an extension of M b

k which is also universal over Mk+1
k+1 , and

set fk,k+1 := g ◦ f . To see that Condition 8 of the construction holds, just apply
monotonicity and the fact that fk,k+1(b) = b to (3). See figure 4.

M i∗+1
i∗+1 . . .

⋃
l<kM

l
l Mk

k Mk+1
k . . .

⋃
l<δM

l
lT diag

b

M ′

f

g ◦ f

M̊k
i∗+1 . . .

⋃
l<k M̊

l
l M b

kT̊ k

T̊ k+1

akai∗+1

Figure 4. The construction of T̊ k+1(dotted) from T̊ k (bold)
with g ◦ f fixing Mk

k and b.

It is easy to check by invariance and the induction hypothesis that T̊ k+1

defined by the models M̊k+1
l := fk,k+1(M̊k

l ) for l < k satisfies the remaining

requirements on T̊ k+1. Then the rest of the directed system can be defined by the
induction hypothesis and the mappings fl,k+1 := fl,k ◦ fk,k+1 for i∗ + 2 ≤ l < k.

This completes the construction.
Case (2), continued: Now that we have a tower T̊ δ extending T � δ which

contains b, we are in a situation similar to the proof in Case (1). To contradict

that T is reduced, we need only lengthen T̊ δ to a discontinuous extension of the
entire tower (M̄, ā, N̄) by taking the δth model to be some extension of

⋃
i<δ M̊

i
i
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which is also universal over Mδ. This discontinuous extension of (M̄, ā, N̄) along

with b ∈ M̊δ
i∗+1 witness that (M̄, ā, N̄) cannot be reduced.

a
Although not used here, the converse of this theorem is also true, as in [17].

Note that the following does not have any assumption about κ∗µ(K).

Proposition 4.6. Suppose K satisfies Assumption 2.3.(1), (2), and (4). Sup-
pose further that that, for every reduced tower (M̄, ā, M̄) ∈ K∗µ,α, M̄ is contin-
uous at limit ordinals of cofinality δ. Then K satisfies (µ, δ)-symmetry for non
µ-splitting.

Proof. The proof is an easy adaptation of [17, Theorem 3.(b) → (a)]. The
same argument works; the only adaptations are to require that every limit model
to in fact be a (µ, δ) limit model and that the tower T be of length δ + 14. a

§5. Uniqueness of Long Limit Models. We now begin the proof Theorem
1.2, which we restate here.

Theorem 1.2. Suppose that K is an abstract elementary class satisfying As-
sumption 2.3. For θ and δ limit ordinals < µ+ both with cofinality ≥ κ∗µ(K), if
K satisfies symmetry for non-µ-splitting (or just (µ, δ)-symmetry), then, for any
M1 and M2 that are (µ, θ) and (µ, δ)-limit models over M0, respectively, we have
that M1 and M2 are isomorphic over M0.

The structure of the proof of Theorem 1.2 from this point on is similar to the
proof in [6, Theorem 1.9]. For completeness we include the details here, and
emphasize the points of departure from [6, Theorem 1.9].

We construct an array of models which will produce a model that is both
a (µ, θ)- and a (µ, δ)-limit model. Let θ be an ordinal as in the definition of
relatively full tower so that cf(θ) ≥ κ∗µ(K) and let δ = κ∗µ(K). The goal is to
build an array of models with δ + 1 rows so that the bottom row of the array is
a relatively full tower indexed by a set of cofinality θ+ 1 continuous at θ. To do
this, we will be adding elements to the index set of towers row by row so that at
stage n of our construction the tower that we build is indexed by In described
here.

The index sets Iβ will be defined inductively so that 〈Iβ | β < δ + 1〉 is an
increasing and continuous chain of well-ordered sets. We fix I0 to be an index
set of order type θ + 1 and will denote it by 〈iα | α ≤ θ〉. We will refer to
the members of I0 by name in many stages of the construction. These indices
serve as anchors for the members of the remaining index sets in the array. Next
we demand that for each β < δ, {j ∈ Iβ | iα < j < iα+1} has order type
µ · β such that each Iβ has supremum iθ. An example of such 〈Iβ | β ≤ δ〉 is
Iβ = θ × (µ · β)

⋃
{iθ} ordered lexicographically, where iθ is an element ≥ each

i ∈
⋃
β<δ Iβ . Also, let I =

⋃
β<δ Iβ .

To prove Theorem 1.2, we need to prove that, for a fixed M ∈ K of cardinality
µ, any (µ, θ)-limit and (µ, δ)-limit model over M are isomorphic over M . Since all
(µ, θ)-limits over M are isomorphic over M (and the same holds for (µ, δ)-limits),

4In a happy coincidence, the notation in that proof already agrees with this change.
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it is enough to construct a single model that is simultaneously (µ, θ)-limit and
(µ, δ)-limit over M . Let us begin by fixing a limit model M ∈ Kµ. We define, by
induction on β ≤ δ, a <-increasing and continuous sequence of towers (M̄, ā, N̄)β

such that

1. T 0 := (M̄, ā, N̄)0 is a tower with M0
0 = M .

2. T β := (M̄, ā, N̄)β ∈ K∗µ,Iβ .

3. For every (p,N) ∈ St(Mβ
i ) with iα ≤ i < iα+1 there is j ∈ Iβ+1 with

iα < j < iα+1 so that (ga-tp(aj/M
β+1
j ), Nβ+1

j ) and (p,N) are parallel.

See Figure 5.

Ni0

Niα

M0
i0

M0
i1

. . .M0
iα

M0
iα+1 . . .

M0
iθ

=⋃
k<θM

0
ik

T 0 ∈ K∗µ,I0

M1
i0

. . .M1
iα
≪M1

iα+1
≪M1

i1 . . .

≺
u

M1
iθ

=⋃
k<θM

1
ik

T 1 ∈ K∗µ,I1

...
...

...
...

Mβ
i0

. . .Mβ
iα

Mβ
iα+1

. . .
Mβ
iθ

=⋃
k<θM

β
ik

T β ∈ K∗µ,Iβ

Mβ+1
i0

Mβ+1
iα

≪Mβ+1
iα+1 . . .

≺
u

Mβ+1
iθ

=⋃
k<θM

β+1
ik

T β+1 ∈ K∗µ,Iβ+1

T δ ∈ K∗µ,Iδ

...
...

...
...

Mδ
i0

M δ
iα
≺u Mδ

iα+1

aiαai1

M δ
iθ

=
⋃

γ<δ,k<θ

Mγ
ik

Figure 5. The chain of length δ of towers of increasing index
sets Ij of cofinality θ + 1. The symbol ≪ indicates that there
are µ many new indices between iβ and iβ+1 in Ij+1\Ij . The
elements indexed by these indices realize all the strong types
over the model M j

iα
. The notation ≺u is an abbreviation for a

universal extension.

Given M , we can find a tower (M̄, ā, N̄)0 ∈ K∗µ,I0 with M �K M0
0 because

of the existence of universal extensions and because κ∗µ(K) < µ+. At successor

stages we first take an extension of (M̄, ā, N̄)β indexed by Iβ+1 and realizing all
the strong types over the models in (M̄, ā, N̄)β . This tower may not be reduced,
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but by Fact 4.2, it has a reduced extension. At limit stages take unions of the
chain of towers defined so far.

Notice that by Fact 4.3, the tower T δ formed by the union of all the (M̄, ā, N̄)β

is reduced. Furthermore, by Theorem 4.5 every one of the reduced towers T j is
continuous at θ because cf(θ) ≥ κ∗µ(K). Therefore Mδ

iθ
=
⋃
k<θM

δ
ik

, and by the

definition of the ordering < on towers, the last model in this tower (M δ
iθ

) is a

(µ, δ)-limit model witnessed by 〈M j
iθ
| j < δ〉. Since M1

iθ
is universal over M , we

have that M δ
iθ

is (µ, δ)-limit over M .

Next to see that Mδ
iθ

is also a (µ, θ)-limit model, notice that T δ is relatively
full by condition 3 of the construction and the same argument as [6, Claim 5.11].
Therefore by Theorem 4.5 and our choice of δ with cf(δ) ≥ κ∗µ(K), the last model

Mδ
iθ

in this relatively full tower is a (µ, θ)-limit model over M .
This completes the proof of Theorem 1.2.
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