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Abstract. The cofinality quantifiers were introduced by Shelah as an example

of a compact logic stronger than first-order logic. We show that the classes
of models axiomatized by these quantifiers can be turned into an Abstract

Elementary Class by restricting to positive and deliberate uses. Rather than

using an ad hoc proof, we give a general framework of abstract Skolemization
that can prove a wide range of examples are Abstract Elementary Classes.

1. Introduction

Abstract Elementary Classes (AECs, introduced by Shelah [She87]) are the pri-
mary framework to do classification theory beyond first-order logic. They are de-
fined as a collection (K,≺K) of structures K and a strong substructure relation ≺K
satisfying a certain set of axioms; see [Bal09] for an introduction to these axioms
and the basic properties of AECs. These axioms are designed to be broad enough
to contain classes axiomatized by Lλ,ω and some extensions, but provide enough
structure to do classification theory. Beyond AECs, µ-AECs (introduced by Boney,
Grossberg, Lieberman, Rosicky, and Vasey [BGL+16]) can capture classes axioma-
tized in Lλ,µ, but at the loss of the development of their classification theory.

The primary extension of Lλ,ω that form AECs are extensions by cardinality
quantifiers Qα (although Baldwin, Ekloff, and Trlifaj [BET07] provide an extension
in a different direction). Here, the cardinality quantifier is interpreted soQαxφ(x,y)
is true (in some structure) iff there are at least ℵα-many x that make φ(x,y) true.
Then classes axiomatized in Lλ,ω(Qα) form an AEC, although the strong substruc-
ture relation must be strengthened.1 Most logics extending Lλ,ω that axiomatize
AECs work by adding quantifiers that have a similar ‘feel’ to the cardinality quanti-
fiers, for instance the Ramsey or Magidor-Malitz quantifiers [MM77] or the structure
quantifiers [BV19].

We show how extension by another type of quantifier–the cofinality quantifiers
introduced by Shelah [She75] (see Section 2)–can be made an AEC. Cofinality
quantifiers, given a set of regular cardinals C, Qcof

C are a binary quantifier, where

Qcof
C x, y φ(x, y, z)

means that φ(x, y, z) is a linear order whose cofinality is in C. Among the many
properties of cofinality quantifiers, perhaps the most surprising is that L(Qcof

C ) is

Date: September 28, 2022.
1The reason these classes form an AEC and that the substructure relation must be changed is

essentially because both Qα and ¬Qα can be expressed in an existential fragment of some Lλ,µ;

see Section 4 for more.
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fully compact (see [She75] or Fact 2.2)! This is a rarity among extensions of first-
order logic: Lindström’s Theorem [Lin69] says that any extension of first-order logic
must sacrifice either compactness or the downward Löwenheim-Skolem property,
but in practice most extensions of first-order logic become incompact. This makes
cofinality quantifiers particularly intriguing to capture by an AEC since even small
fragments of compactness can greatly advance the classification theory (see Boney
and Vasey [BV17] for a survey).

In order to make cofinality quantifiers an AEC, we must make certain changes the
class. We give more details in Section 3, but the essential issue is that the cofinality
of a linear order is not preserved under increasing unions. This necessitates two
changes:

• Like cardinality quantifiers, the strong substructure relation must preserve
the cofinality of linear orders with a positive instance of the cofinality quan-
tifier. This manifests by not allowing end extensions of such linear orders.
• We have the additional issue that the cofinality can decrease following an

increasing union. This requires that we restrict to what we call positive,
deliberate uses of the cofinality quantifier. Definition 3.1 makes this precise.

Given a positive L(Qcof
C )-theory T , we form an AEC K+

T through the deliberate
use of thises quantifiers (Definition 3.1), and we briefly explore the properties of
this AEC. An unfortunate consequence of the changes to strong substructure is
that many of the nice properties of elementary classes that follow from compactness
(amalgamation, etc.) do not hold in these AECs, although these AECs do have
some nice properties. We discuss how some of these issues have their roots in
the models produced by the compactness theorem for cofinality quantifiers. Still,
there are some general results that hold for any classes of models that can be made
into an AEC with some strong substructure relation (existence of EM models,
undefinability of well-order, etc.), and these apply to our classes. Moving beyond
AECs, classes axiomatized by cofinality quantifiers naturally form a µ-AEC without
the changes above; here, µ is the successor of the supremum of C for Qcof

C . This
follows from the fact that the cofinality quantifier Qcof

C is expressible in L∞,µ.
Rather than proving that K+

T forms an AEC through an ad hoc method, we
present a general framework of finitary abstract Skolemizations (Definition 4.1).
This captures the essence of Shelah’s Presentation Theorem [She87], but with a
tighter connection to the syntax used to define the AEC. This is a rather broad
method and is able to encompass most known quantifiers that define AECs (see
Example 4.7).

2. Cofinality quantifiers and background

Background on abstract logics and quantifiers is given in Barwise [Bar82], but is
not really necessary here. The reader unfamiliar with these ideas can always replace
an abstract logic L by, depending on the circumstance, one of: finitary first-order
logic L = Lω,ω; infinitary logic Lλ,ω; or a mild extension of Lλω by cardinality
quantifiers. For completeness, the logic Lλ,µ (for regular λ ≥ µ) extends first-order
logic by closing formula formation under < λ-sized disjunctions and conjunctions,
and existential and universal quantification of < µ-sized sequences of free variables,
with the obvious semantics.
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Cofinality quantifiers were introduced by Shelah [She75] to answer questions of
Keisler and Friedman on compact logics stronger than first-order. We gave an
informal description in the Introduction, but give a formal definition here.

Definition 2.1. Fix a logic L, a class of regular2 cardinals C, and a language τ .

(1) The logic L
(
Qcof
C

)
is an extension of L where we add a formulation rule

where, if φ(x,y, z) is a formula of L
(
Qcof
C

)
(τ) (with `(x) = `(y) finite),

then so is

Qcof
C x,yφ(x,y, z)

with z the remaining free variables. The semantics of this formula are given
by, if M is a τ -structure and c ∈M , then

M � Qcof
C x,yφ(x,y, c)

iff the relation φ(x,y, c) is a linear order without last element of the set
I := {a ∈ M : there is b ∈ M,M � φ(a,b, c)} and that the cofinality of
this linear order is in C.

(2) A fragment F of L
(
Qcof
C

)
(τ) is a collection F ⊂ L

(
Qcof
C

)
(τ) of formulas

that is closed under subformulas.

When we have a singleton C = {κ}, we write Qcof
κ in place of Qcof

{κ}; there is no risk

of confusion because we never place finite cardinals in C.

Note that the assertion that ‘φ(x,y, z) is a linear order without last element’
is expressible by a single first-order sentence, and it is the assertion about the
cofinality that moves beyond L. Also, due to the requirement that φ(x,y, c) forms
a linear order, we have several equivalent ways to define the set underlying set I:

{a ∈M : there is b ∈M,M � φ(a,b, c)} = {b ∈M : there is a ∈M,M � φ(a,b, c)}
= {a ∈M : M � φ(a,a, c)}

The last is compactly denoted φ(M,M, c) and is how we will most often refer to
the underlying set.

The most common of the cofinality quantifiers used is Qcof
ω . Perhaps the most

useful fact about cofinality quantifiers is that first-order logic augmented by a single
cofinality quantifier is compact; recall a logic L is compact iff given any theory
T ⊂ L(τ), T has a model iff every finite subset has a model.

Fact 2.2 ( [She75], [CZ20, Corollary 4.4]). For every class C of regular cardinals,

L
(
Qcof
C

)
is compact.

Remark 2.3. (1) In keeping with Lindström’s Theorem, L
(
Qcof
C

)
fails the

countable downward Löwenheim-Skolem property. For instance, the L
(
Qcof
ω

)
({<

})-sentence

“x < y is a linear order with no last element” ∧ ¬Qcof
ω x, y(x < y)

has no countable model.

2The cofinality of a linear order is always a regular cardinal, so adding singular cardinals makes
no difference
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(2) Casanovas and Ziegler [CZ20] have recently provided an excellent and self-
contained exposition of Fact 2.2. A reader suprised to learn about the

full compactness of L(Qcof
C ) is not alone; the exposition by Casanovas and

Ziegler [CZ20] was apparently inspired by a referee of Casanovas and She-
lah [CS19] that did not believe this was a ZFC result.

For future reference, it is helpful to understand the basic structure of the proof of
Fact 2.2. At the start two cardinals are fixed: κ ∈ C and λ ∈ C (if C is empty or all
regular cardinals, then Qcof

C is not interesting). Then T is expanded to definably link
all definable linear orders that are positively quantified by Qcof

C in one group and
all definable linear orders that are negatively quantified by Qcof

C in another group.
Then we find a model of the first-order part of T in which all definable linear
orders have cofinality max{κ, λ}. This is iteratively extended by end-extending all
of one group of the linear orders while fixing the other group using the Extended
Omitting Types Theorem [CK12, Theorem 2.2.19]. We continue this iteration for
min{κ, λ}-many steps to achieve the desired cofinalities.

The key take away from this proof is that always produces models were the
definable linear orders have one of exactly two cofinalities.

Finally, we give an explicit example showing that Qcof is stronger than L∞,ω.

Example 2.4. Recall that two structures are back and forth equivalent to each
other if and only if they are L∞,ω equivalent. It is routine to show that (Q, <) is
aback and forth equivalent to (Q×ω1, <). However, (Q, <) satisfies Qcof

ω x, y(x < y)
while (Q× ω1, <) does not.

We also provide the the basics of AECs (and µ-AECs); [Bal09, Gro1X] provide
further background.

Definition 2.5. Fix an infinite cardinal µ. A µ-Abstract Elementary Class (or
µ-AEC for short) is a pair (K,≺K) where K is a collection of structures in a fixed
< µ-ary language τK satisfying the following axioms

(1) ≺K is a partial order on K that is stronger than ⊂τK .
(2) K and ≺K are closed under isomorphisms.
(3) (Coherence) If M0,M1,M2 ∈ K such that M0 ≺K M2, M1 ≺K M2, and

M0 ⊂τK M1, then M0 ≺K M1

(4) (Closure under µ-directed limits) Given a µ-directed system {Mi ∈ K : i ∈
I}, we have that the colimit of this system

⋃
i∈I

Mi computed in the category

of τ -structures is also the colimit in K.
(5) (Lowenheim-Skölem-Tarksi number) There3 is a cardinal LS(K) such that,

for all M ∈ K and A ⊂ M , there is M0 ≺K M such that A ⊂ M0 and
‖M0‖ = |A|<µ + LS(K).

When clear, we often use K to refer to the pair (K,≺K).
By far the most common (and important) case is µ = ω, where we omit µ and

just call it an Abstract Elementary Class (or AEC).

AECs were introduced by Shelah [She87], and generalized to µ-AECs in [BGL+16].
They are the most common framework to develop classification theory for nonele-
mentary classes.

3Formally, once there is a cardinal satisfying this property, all cardinals above it do as well, so
we set LS(K) to be the minimal such cardinal.
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3. L(Qcof
C ) as an Abstract Elementary Class

Fix a set of regular cardinals C and a theory T in some fragment F of L
(
Qcof
C
)

(τ).

Recall that a fragment F is a subset of L
(
Qcof
C
)

(τ) that is closed under subformulas.
To build a notion of strong substructure that makes ModT an Abstract Elemen-
tary Class, we will develop the notion of positive, deliberate uses of the cofinality
quantifier (Definition ??).

The main problem with making ModT an AEC is the smoothness under unions
of chains: If 〈Iα : α < λ〉 is a sequence of linear orders such that Iα is end-extended

by Iα+1, then
⋃
α<λ

Iα has cofinality cfλ regardless of the cofinalities of the Iα. This

necessitates two changes:

• If M � Qcof
C x, yφ(x, y), then we should not allow end extensions of this de-

finable linear order in strong extensions; note this is similar to the condition
on strong extensions when using the cardinality quantifiers.
• If M � ¬Qcof

C x, yφ(x, y), then we similarly worry about end extensions.
However, disallowing any end extensions of any definable linear order would
be too restrictive, so we will only allow positive instances of the cofinality
quantifier. This doesn’t solve the problem completely because definable lin-
ear orders that are not put under the Qcof

C quantifier will ‘accidentally’ end
up with a cofinality in C after the appropriate unions. So, via a Morleyiza-
tion, we avoid this accidental occurence by deliberately tagging formulas
that we wish to be affected by the cofinality restriction.

We detail the construction of positive, definite uses of the cofinality quantifier
that will form the strong substructure of an AEC (we deal with positive, deliberate
uses of quantifiers in more generality in Section 4). We work in some degree of
generality, allowing for an arbitrary logic L to be expanded by cofinality quantifiers,
but this will most often be first-order logic L with possible extension by infinitary
conjunction or cardinality quantifiers. Note that this expansion is similar to the
formation of weak models in [Kei70], but with only one direction of implication.

Definition 3.1. Fix a language τ and a logic L.

(1) Define τL∗ to be

τ ∪ {Rφ(z) : φ(x,y, z) ∈ L(τ)}
where each Rφ is new.

(2) Fix a base theory in L
(
Qcof
C

)
(τL∗ )

T cof
τ,L :=

{
∀z
(
Rφ(z)→ Qcof

C x,yφ(x,y, z)
)

: φ(x,y, z) ∈ L(τ)
}

(3) Let T ⊂ L(Qcof
C )(τ) be a theory where Qcof

C only appears positively4. Define
two theories T ∗ ⊂ L(τL∗ ) and T+ ⊂ L(Qcof)(τL∗ ) by

T ∗ is the result of replacing each use of “Qcofx,yφ(x,y, z)” with

“Rφ(z)” in the inductive construction of each ψ ∈ T
T+ := T ∗ ∪ T cof

τ,L

4The idea of quantifiers appearing positively and the inductive construction of formulas as-
sumed in this definition do not apply to abstract logics generally, but are clearly defined for the

logics we will apply this definition to.
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(4) Given two τL∗ -structures M ⊂ N , define the relation

M ≺L(+) N

iff M ≺L N and, for all a ∈ M , if M � Rφ(a), then φ(M,M,a) is cofinal
in φ(N,N,a).

The reason to jump through all of these hoops is the following result.

Theorem 3.2. Fix a set of regular cardinal C and set L = L, finitary first-order

logic. Let T ⊂ L
(
Qcof
C

)
(τ) be a theory where all instances of cofinality quantifiers

appear positively. Then

K+
T :=

(
ModT+,≺L(+)

)
is an Abstract Elementary Class with LS(K+

T ) = |τ |+ (supC)+.

Additionally, the same holds true if L is replaced by other logics that axiomatize
AECs with the appropriate modification to the strong substructure relation and the
Löwenheim-Skolem number.

Proof: This is a corollary of the more general result Theorem 4.11 †

Now that we have an AEC K+
T axiomatized in the fully compact logic L

(
Qcof
C
)
,

we might hope that several nice consequences of compactness (amalgamation, tame-
ness, etc.) follow directly. However, this is not the case. The reason has to do with a
disconnect between L(Qcof

C )-elementary diagrams and the strong substructure ≺K+
T

.

Recall that the L-elementary diagram EDL(M) of a τ -structure M is the col-
lection of all L (τ ∪ {cm : m ∈M})-sententences that are true in M when we in-
terpret cMm = m. For first-order logic or any fragment of infinitary Lλ,κ, we have
an equivalence between ‘there exists an L-elementary embedding M → N ’ and
‘N � EDL(M).’

However, this does not hold for K+
T : modeling EDL(Qcof

C )(M) is not sufficient to

guarantee a K+
T -embedding since it does not guarantee that the Rφ-tagged linear

orders of M are cofinal in N (Condition 3.1.(4)). In the desired uses of compactness,
it is routine to find a model of some L-elementary diagram and turn that into an
extension of the desired models; this is not possible. However, we have some results.

Use L+(Qcof
C ) to denote the L(Qcof

C )-formulas where Qcof
C only appears positively.

Proposition 3.3. Let T be an L+(Qcof
C )-theory and define K+

T as in Theorem 3.2.

(1) K+
T has arbitrarily large models.

(2) Suppose M ∈ K has size κ and all Rφ-tagged linear orders have cofinality
κ; that is, if M � Rφ(a), then φ(M,M,a) has cofinality κ. Then M has a
proper ≺K+

T
-extension in K+

T .

Proof: The first follows easily from the compactness of L(Qcof
C ) since it doesn’t

mention ≺K+
T

. For the second, we use the notation and results of [CZ20]. Pick

some ψ that is not definably connected to the Rφ-tagged linear orders in M . Then,
by [CZ20, Corollary 3.2], we can find an L(Qcof

C )-elementary extension N of M that
extends ψ, but in which every Rφ-tagged order has M cofinal. †
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3.1. L
(
Qcof
ω

)
as an ω1-Abstract Elementary Class. Above, there was much

effort put into finding precisely the right condition to form an AEC out of ModT ,
and the end result was a rather restrictive solution. Here, we describe a more
uniform and natural approach with the drawback that the resulting class is not an
Abstract Elementary Class, but instead a µ-Abstract Elementary Class.

While Qcof
ω is not axiomatizable in L∞,ω (recall Example 2.4), it is axiomatizable

in Lω1,ω1
. More generally, for any set of regular cardinals C, Qcof

C x,yφ(x,y, z) is
expressible by the first-order statement that φ defines a linear order without last
element and the L(µ+|C|)+,µ+ assertion

∨
λ∈C

∃〈xi : i < λ〉

 ∧
i<j<λ

φ(xi,xj , z) ∧ ∀w
∨
i<λ

φ(w,xi, z)


where µ = supC. The logics Lλ,κ come with a well-known notion of elementarity.

Definition 3.4. Let C be a class of regular cardinals, τ be a langauge, and F be a

fragment of L(Qcof
C ).

(1) Setting µ = supC, let F∗ be the fragment of L(µ+|C|)+,µ+(τ) that is formed

by replacing each instance of Qcof
C by the formulation listed above (including

the first-order part) and closing under subformula, etc.
(2) Given τ -structures M and N , set M ≺∗F N iff M ≺F∗ N .

Theorem 3.5. Fix a set C of regular cardinals and set µ = (supC)+. For any

theory T in L
(
Qcof
C

)
(τ), K∗T is a µ-Abstract Elementary Class with LS(K∗T ) =

(|τ |+ µ+ |C|)<µ. This AEC has arbitrarily large models and satisfies the undefin-
ability of well-ordering.

4. Abstract Skolemizations and a sufficient criteria to be an AEC

We collect here two related and helpful results: a handy criteria for a class to be
an Abstract Elementary Class (Corollary 4.5) and an application of this to show
generally that positive, definite uses of infinitary quantification forms an Abstract
Elementary Class (Theorem 4.11).

First, we define an abstract notion of Skolemization, that is, an expansion by
functions that turns the class into one axiomatizable by a universal theory in L∞,ω.
The goal of this notion is to capture the way in which various extensions of Lλ,ω
by different quantifiers have been turned into AECs.

Definition 4.1. Fix (K,≺K), where K is a class of τ -structures and ≺K is a partial
order on K. A (finitary) abstract Skolemization (to a universal theory in L∞,ω) of
(K,≺K) is an expansion of the langauge τ∗ := τ ∪ {Fi : i ∈ I} by finitary function
symbols and a universal theory T ∗ ⊂ L∞,ω(τ∗) such that the restriction map

· � τ : (ModT ∗,⊂)→ (K,≺K)

satisfies the following properties:

(1) (capturing) The restriction map is a functor that is surjective on objects
and arrows.



8 WILL BONEY

(2) (lifting) Every map f : M → N in K has a lift5 f∗ : M∗ → N∗ in ModT ∗.
Moreover, given any lift M∗ of the model M and any map f : M → N in
K, there is a lift f∗ : M∗ → N∗ in ModT ∗ with the prescribed domain.

(3) (coherence/local testability) Given M0 ⊂M1 ⊂ N , if there are separate lifts
M∗0 ⊂ N∗0 and M∗1 ⊂ N∗1, then there are lifts M∗∗0 ⊂M∗∗1 ⊂ N∗∗.

We can also define a < µ-ary abstract Skolemization (to a universal theory in
L∞,µ) by allowing the function symbols to be < µ-ary and the universal theory T ∗

to be in L∞,µ.

We could also speak of abstract Skolemizations to theories in (fragments of) logics
different than universal theories, but we don’t have use for that here.

We often omit ‘finitary’ and ‘to a universal theory in L∞,ω’.

We do not explicitly mention it in the definition, but the restriction functor as
above is faithful (injective on arrows).

Proposition 4.2. Any restriction functor as above is faithful.

Proof: In both categories, the arrows between structures are determined by
their value on the underlying sets. †

The following sequence of results connects AECs to abstract Skolemizations (one
direction is Shelah’s Presentation Theorem).

Theorem 4.3. If (K,≺K) has an abstract Skolemization, then (K,≺K) is an AEC
with Löwenheim-Skolem number |τ∗|, where τ∗ is the language in the witnessing
expansion.

Proof: Let {Fi : i ∈ I} and T ∗ ⊂ L∞,ω (τ ∪ {Fi : i ∈ I}) witness the abstract
Skolemization. Most of the AEC axioms (recall Definition 2.5 when µ = ω) follow
immediately. We comment on the three axioms that tend to cause issues for classes
being AECs: coherence, smoothness, Löwenheim-Skolem.

Coherence: This is directly addressed by the ‘coherence/local testability’ prop-
erty of the expansion. If we have M0 ⊂ M1, M0 ≺K M2, and M1 ≺K M2, the
surjectivity of the restriction gives lifts M∗0 ⊂ M∗02 and M∗1 ⊂ M∗12 . This is pre-
cisely the set up to give lifts M∗∗0 ⊂ M∗∗1 ⊂ M∗∗2 . By applying the restriction
functor, we have M0 ≺K M1, as desired.

Smoothness: This is the key use of the condition (2). Let 〈Mi ∈ K : i < α〉 be a
continuous, ≺K-increasing chain of structures with α limit. We define a continuous,
⊂-increasing chain 〈M∗i � T ∗ : i < α〉 such that M∗i is a lift of Mi. To do this, start
by letting M∗0 be any lift of M0. For successors i = j + 1, we have a lift M∗j of Mj

and Mj ≺K Mi, so condition (2) guarantees a lift M∗i of Mi such that M∗j ⊂ M∗i .
For limits, we can take unions since the restriction functor preserves unions.
In the end, we have that ⋃

i<α

Mi =

(⋃
i<α

M∗i

)
� τ

so this union is in K and is the least upper bound of the chain.

5A lift of a model M or an arrow f : M → N (or a more complicated diagram) from K is a
model M∗ or arrow f∗ : M∗ → N∗ from (ModT ∗,⊂) such that the restriction functor maps them

down to the original: M∗ � τ = M , N∗ � τ = N , and f∗ � τ = f



COFINALITY QUANTIFIERS IN ABSTRACT ELEMENTARY CLASSES AND BEYOND 9

Löwenheim-Skolem: Let A ⊂M ∈ K and let M∗ be a lift of M . Then, since the
restriction functor doesn’t change the universe, A ⊂M∗. Set M∗0 to be the closure
of A under the τ ∪ {Fi : i ∈ I}-functions of M . Since T ∗ is universal, M∗0 � T ∗, so
M∗0 � τ ≺K M , contains A, and has size ≤ |A|+ |τ ∪ {Fi : i ∈ I}|.

†

Theorem 4.4. If (K,≺K) is an AEC, then the expansion given in Shelah’s Pre-
sentation Theorem is an abstract Skolemization.

The following proof assumes familiarity with the proof and the idea of Shelah’s
Presentation Theorem; see Baldwin and Boney [BB17, Section 3.1] for an exposi-
tion.

Proof: Shelah’s Presentation Theorem presents (K,≺K) by an expansion to
τ∗ = τ(K) ∪ {Fnα : n < ω, α < LS(K)} that omit a collection Γ of quantifier-free
types. We can express this omission through the following L∞,ω sentence

∧
p∈Γ

∀x
∨
φ∈p

¬φ(x)

The statement of Shelah’s Presentation Theorem ( [BB17, Fact 3.1.1] is perfect for
our purposes) gives everything we need except for the coherence/local testability
condition. But this holds exactly because the starting class (K,≺K) is an AEC and,
therefore, satisfies coherence. †

Corollary 4.5. Given a pair (K,≺K) in a finitary language, we have that (K,≺K)
is an AEC iff it has a finitary abstract Skolemization to a universal theory in L∞,ω.

Proof: The two directions are Theorems 4.3 and 4.4. †

We can also generalize this result to µ-AECs, which we state without proof (the
proof is the same).

Theorem 4.6. Given a pair (K,≺K) in a < µ-ary language, we have that (K,≺K)
is a µ-AEC iff it has a < µ-ary abstract Skolemization to a universal theory in
L∞,µ.

Now we turn to the question of how to find abstract Skolemizations. Shelah’s
Presentation Theorem gives one way, but the true motivation came from the rea-
son that some quantifiers (like cardinality or cofinality) allow us to form Abstract
Elementary Classes: in each case, the quantifiers are expressible in a fragment of
L∞,∞ whose only use of inifinitary quantification was a single existential quantifier
at the very beginning.



10 WILL BONEY

Example 4.7.

Qαxφ(x,y) ⇐⇒ ∃〈xi : i < ℵα〉

 ∧
i<ℵα

φ(xi,y) ∧
∧

i<j<ℵα

xi 6= xj


¬Qα+1xφ(x,y) ⇐⇒ ∃〈xi : i < ℵα〉∀z

(
φ(z,y)→

∨
i<ℵα

z = xi

)
Qcof
κ x,yφ(x,y, z) ⇐⇒ ∃〈xi : i < κ〉 (‘φ(x,y, z) defines a linear order with no last element’

∧∀x′
∨
i<κ

φ(x′,xi, z)

)
Qecα x,yφ(x,y, z) ⇐⇒ ∃〈xi : i < ℵα〉 (‘φ(x,y, z) defines an equivalence relation

∧∀x′
(
φ(x′,x′, z)→

∨
i<ℵα

φ(xi,x
′, z)

))

Here Qecα says that the formula gives a definable equivalence relation with at least ℵα-
many equivalence classes. The Ramsey/Magidor-Malitz quantifiers [MM77] could
be similarly expressed in this way. Moreover, the strong substructure relation is
exactly elementarity according to the fragment of L∞,∞ containing the right hand
sides

This form is exactly what allows for a finitary abstract Skolemization to L∞,ω
(which can then be further Skolemized to a universal theory). Note that the fact
that both the positive and negative instances of cardinality quantifiers6have this
nice form is what accounts for not needing to worry about deliberate uses of this
quantifier.

We now make this connection precise, beginning with some definitions.

Definition 4.8. Say that a quantifier Q is κ-existentially definable in L1 over L0

iff, for each language τ , there is a map

φ(x,y) ∈ L0(τ) 7→ Ψφ(xi : i < κ,y) ∈ L1(τ)

such that the following holds

� ∀y [(Qxφ(x,y))↔ (∃{xi : i < κ}Ψφ(xi : i < κ,y))]

The following definition only makes sense due to a subtle (and often overlooked)
feature of L∞,ω: the formation of infinitary conjuncts and disjuncts is only allowed
if the resulting formula has only finitely many free variables.

Definition 4.9. The logic L(λ,ω) is exactly like Lλ,ω except without the restriction
to finitely many free variables in conjunctions and disjunctions.

6When α is a successor, this is immediate from what is written. When α is limit, ¬Qαxφ(x)

is equivalent to
∨
β<α

¬Qβxφ(x).
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To emphasize this distinction, consider the formulas around the assertion that a
given ω-sequence is ill-founded

φ(xn : n < ω) := “
∧
n<ω

xn+1 < xn”

ψ(xn : n < ω) := “φ(xn : n < ω)→ ∃y
∧
y < xn”

Φ := “∃〈xn : n < ω〉φ(xn : n < ω)”

• We have φ(x), ψ(x),Φ 6∈ Lω1,ω and well-ordering is undefinable in this logic.
Further, we can arrange M ≺Lω1,ω

N with an ill-founded sequence in M
such that a lower bound is added in N .
• We have φ(x), ψ(x) ∈ L(ω1,ω) but Φ 6∈ L(ω1,ω), so well-ordering is still not

definable in this logic. However, if M ≺L(ω1,ω)
N and a = {an ∈M : n < ω}

is an ill-founded sequence, then any lower bound in N must already occur
in M (by applying the elementarity to ψ(a)).
• We have that φ(x), ψ(x),Φ ∈ Lω1,ω1

and well-ordering is definable in this
logic.

This definition captures the quantifiers listed above.

Proposition 4.10. All quantifiers in Example 4.7 are κ-existentially definable in
L(λ+κ,ω) over Lλ,ω for the appropriate κ.

Proof: The required maps are given in Example 4.7. †

Theorem 4.11. If Q is κ-existentially definable in L(µ,ω) over Lλ,ω, then classes
axiomatized by positive, deliberate uses of Q in Lλ,ω have finitary abstract Skolem-
izations.

Furthermore, the same holds if Lλ,ω is extended by some collection of quantifiers
that are κ-existentially definable in L(µ,ω) over Lλ,ω.

Proof: Let Q be κ-existentially definable in L(λ,ω) in L(µ,ω) over Lλ,ω via the
map φ(x,y) 7→ Ψ(xi : i < κ,y). Following Definition 3.1, an axiomatization via
positive, deliberate uses of Q in Lλ,ω consists of

• T ⊂ Lλ,ω (Q) (τ) with Q only occuring positively;
• τ∗ = τ ∪ {Rφ(y) : φ(x,y) ∈ Lλ,ω(τ)};
• T ∗ ⊂ Lλ,ω(τ) is the result of inductively replacing instances of ‘Qxφ(x,y)’

in T by ‘Rφ(y)’; and
• T+ = T ∗ ∪ {∀y (Rφ(y)→ Qxφ(x,y)) : φ(x,y) ∈ Lλ,ω}

Then K := Mod(T+) is the class we need to we need to provide the Skolemization
for. We describe the Skolemization in two steps.

For the first step, for each φ(x,y), add functions{
FQ,φi,j (y) : i < κ, j < `(x)

}
and set

T++ = T ∗ ∪
{
∀y
(
Rφ(y)→ Ψφ

(
FQ,φi,j (y) : j < `(x), i < κ,y

))
: φ(x,y) ∈ Lλ,ω

}
Crucially, T++ is an Lλ+µ,ω-theory. So this gives a Skolemization of T+ to a (non-
universal) theory in Lλ+µ,ω. It is a standard result (e.g., see [Kei71, Theorem 17]
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for the case λ+µ = ω1) that L∞,ω theories have finitary Skolemizations to universal
theories in L∞,ω; the second step is to do this Skolemization.

Putting these steps together, we have a finitary Skolemization of K to a universal
theory in L∞,ω; we can define ≺K by setting M ≺K N iff there are lifts M∗ and N∗

such that M∗ ⊂ N∗. †

Corollary 4.12. All of the quantifiers listed in Example 4.7 form AECs when used
positively and delibarately over L∞,ω and can be mixed together.

Note that the strong substructure relation ≺K in Defintion 4.1 can be recovered
from the expansion T ∗. Chasing through the definitions, the appropriate strong
substructure relation in the cases above is elementarity according to the fragment
of L∞,∞ needed to define the quantifiers; this corresponds exactly to the seemingly
ad hoc notions given for cardinality and cofinality quantifiers.
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