
ZILBER’S PSEUDO-EXPONENTIAL FIELDS

WILL BONEY

The goal of this talk is to prove the following facts above Zilber’s pseudoexpo-
nential fields

(1) they are axiomatized in Lω1,ω(Q) and this logic is essential.
(2) they form a quasiminimal class
(3) C ≡ B implies C ∼= B

The results and presentation are drawn from Kirby “A note on the axioms for
Zilber’s Pseudo-Exponential Fields” [Kir] and Bays and Kirby “Excellence and
uncountable categoricity of Zilber’s Exponential Fields” [BaKi].

The class of pseudo-exponential fields is denoted EC∗st,ccp and is the collection of
structures 〈F ; +, ·, exp〉 satisfying the following axioms:

(1) ELA-field: F models ACF0 and exp : F → F · is a surjective homomor-
phism

(2) Standard kernel: ker exp is an infinite cyclic group generated by a tran-
scendental element 2πi.

(3) Schanuel property: For all x ∈ F ,

δ(x) := td(x, exp(x))− ldimQ(x) ≥ 0

(4) Strong exponential-algebraic closedness: Every system of exponential
polynomials has a solution, unless this would violate Schanuel.

(5) Countable Closure Property: eclF is a pregeometry such that, if C ⊂ F
is finite, then eclF (C) is countable.

The fourth axiom is imprecisely stated, but we will state it more precisely. We will
change the language (essentially but conservatively) to show this is a quasiminimal
class.

First, we define some useful notions.

δ(x/A) := td(x, exp x, A, expA/A, expA)− ldimQ(x/A)

Second, we discuss the axioms.

(1) ELA-field: Clear.
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(2) Standard kernel: This is Lω1,ω expressible. The important bit is that
this defines the integers:

Z(F ) := {r ∈ F : ∀x[x ∈ ker exp→ rx ∈ ker exp]}
An alternate approach would to just say that Z(F ) is standard (using
Lω1,ω); then the standard kernel is first-order.

(3) Schanuel property: This is expressible as a first order scheme, modulo
the integers being standard: for each variety V ⊂ Gn

a ×Gn
m defined over Q

of dimension n− 1,

∀x∃m ∈ Z(F )− {0}

(
(x, exp(x)) ∈ V →

n∑
i=1

mixi = 0

)
Essentially, this says that any tuple with td(x, exp(x)) < n has some linear
dependence.
This property is a big part of the interest in Zilber’s work. Schanuel’s
Conjecture says that C has satisfies this and, not to understate it’s im-
portance, Wikipedia1 says something like proving Schanuel’s Conjecture
“would generalize most known results in transcendental number theory.”

(4) Strong exponential-algebraic closedness: Before we state this for-
mally, we need some definitions. Write G for Ga ×Gm.

Given a matrix M ∈ Matn×n(Z), this acts on Gn by being an additive
map on Gn

a and a multiplicative map on Gn
m. Write G · V for the image of

V ⊂ Gn under M . An irreducible variety V ⊂ Gn is rotund iff for every
M ∈Matn×n(Z), dimM · V ≥ rkM .
Let (x,y) be a generic point of V over F . V is additively free iff the xi
don’t satisfy ∑

i<n

mixi ∈ F

for any mi ∈ Z, not all 0.
Similarly, V is multiplicatively free iff the yi don’t satisfy

Πi<ny
mi
i ∈ F

for any mi ∈ Z, not all 0.

The property is:
If V is a rotund, additively and multiplicatively free subvariety of Gn

a×Gn
m

defined over F and of dimension n and a is a finite tuple from F , then
there is x ∈ F such that (x, exp x) ∈ V is generic in V over a.

So if there are some exponential polynomials that are nice enough, then
there is a root.

1http://en.wikipedia.org/wiki/Schanuel’s_conjecture#Consequences

http://en.wikipedia.org/wiki/Schanuel's_conjecture#Consequences
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Proposition 0.1 ( [Kir]). This is first-order expressible modulo the previ-
ous axioms.

Proof: The key is that we have Z already definable. Suppose we have
a parametric family of varieties (Vp)p∈P from Gn, where P is the parame-
terizing variety.
It is known (fibre dimension theory) that {p ∈ P : Vp is irreducible of
dimension n} is first order definable.
With Z2, we can define additive freeness:

∀m ∈ Z− {0}∀z∃x

(
x ∈ Vp ∧

∑
i<n

mixi 6= z

)
This gives additive freeness: the generic over F satisfies all equations over
F that every member of Vp does, and this says that, for each element of F ,
there is some tuple that doesn’t linearly combine to it.
Similarly, one can get rotundness and multiplicative freeness3. Alterna-
tively, we can appeal to [Zil05, Theorem 3.2] says that these are first-order
definable in the field language.

Given a parametric family of varieties (Vp)p∈P from Gn, where P is the
parameterizing variety, let P ′ ⊂ P be the subset so Vp is irreducible, of
dimension n, rotund, and additively and multiplicatively free. Then we
add the following scheme

∀p ∈ P ′∀a ∈ F r∃x ∈ F n∀m ∈ Q[
(x, exp x) ∈ Vp ∧

(∑
i<n

mixi +
∑
i<r

mn+iai = 0→ ∧i<nmi = 0

)]
In a sense, this says that span{x} ∩ span{a} = {0} and x is linearly inde-
pendent.
First, note that this follows from axiom 4: Given such a Vp, there is
(x, exp x) ∈ Vp which is generic over a. By additive freeness, this means
that x does not Q-linearly combine to an element of F , which this gives.
Second, suppose this holds. Let V be a rotund, additively and multiplica-
tively free subvariety of Gn

a×Gn
m defined over F and of dimension n. Then

it is Vp in some parametric family4. Let a ∈ F . Adding things to a, we
may assume that δ(y/a) ≥ 0 for all y ∈ F 5 and that V is defined over a.

2Necessary; x1 + px2 = 0 is additively free iff p 6∈ Q
3Note that xy is definable as exp(y log x), which is well-defined for integer y.
4Parametric varieties are the equivalent of fixing the degree and quantifying over all coefficients
in algebraically closed fields.
5To do this, let a′ be a minimizer of δ(y/a) as y ranges over F . Then we have δ(y/aa′) =
δ(yaa′)− δ(aa′) ≥ 0 (by choice of a′), so use aa′ in place of a.
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The scheme then gives a x such that ldimQ(x/a) = n. By Schanuel, then
td(x, exp x/a, exp a) ≥ n. Since V is of dimension n, we have (x, exp x) is
generic in V over (a, exp a), which is more than we need. †

[Kir] says that this was originally described by [Zil05] as a “slight sat-
uratedness” of the structure, so it being first order was a bit of a surprise.
Having it first order allows for the some of the details to be simplified. On
the other hand, the analogy to algebraic closure makes it being first order
more expected.

(5) Countable Closure Property: There are two definitions of exponential
closure that are the same with axiom 2 (we will not prove this, see [Kir10,
Theorem 1.3]).

We define the one used in [Kir]. An exponential polynomial f(X) =
p(X, exp(X)), where p ∈ F [X,Y]. A Khovanskii system of width n is
exponential polynomials f0, . . . , fn−1 of arity n such that

fi(x) = 0∀i < n∣∣∣∣∣∣∣
∂f0
∂x0

. . . ∂f0
∂xn−1

...
. . .

...
∂fn−1

∂x0
. . . ∂fn−1

∂xn−1

∣∣∣∣∣∣∣ (x) 6= 0

Then

eclF (C) := {a0 ∈ F : a ∈ F is the solution to the Khovanski system given
by f0, . . . , fn−1 defined over Q(C)}

By [Kir10, Theorem 1.1], this is a pregeometry in any exponential field.
We also have an easy proof that this is L(Q).

Proposition 0.2 ( [Kir]). Axiom 5 is an L(Q) scheme.

Proof: Given exponential polynomials , let χ(x, z) state that x is a
solution to the Khovanskii system with coefficients z.

∀z¬Qx0∃x1, . . . , xn−1χf (x, z)

†
We’re going to discuss two interesting things coming from [Kir] and then look

at the language used for quasiminimality.

Q cannot be eliminated: We’re going a little out of order here, because we
will use some of the quasiminimality in this proof.

Proposition 0.3 ( [Kir]). Countable closure is not L∞,ω expressible.
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Proof: Let F0 be the zero dimensional Zilber field. Then we can adjoin some a
so exp a = a and form the strong exponential algebraic closure to get F1

6

. Note that F1 is also a zero dimensional Zilber field, so F0
∼= F1. Our goal is

to show that F0 ≺L∞,ω F1.
Let b ∈ F0 and let B be the smallest ELA-subfield containg b. By general

Fraisse construction or [Kir11, Proposition 6.9], both F0 and F1 are isomorphic to
the strong exponential algebraic closure of b. That is F0

∼=B F1. Thus, given any
L∞,ω(b) formula, F0 and F1 agree on it.

We iterate this process to form {Fα : α < ω1}. Note at limit stages, L∞,ω
substructure is well-behaved (L(Q) is not) and taking unions cannot grow the ex-
ponential transcendence degree. Thus Fω1 is L∞,ω equivalent to all of these, but
does not satisfy the countable closure property. †

Our restriction to L∞,ω formulas comparing F0 and F1 was not crucial; this is
true of any logic. However, the key step is that ≺L∞,ω is stable under unions of
chains of any (esp. uncountable) length. Note that this gives the first7 explicit
example of a non-finitary AEC.

Elementary equivalence implies categoricity: Again, we go out of order.
This is [Kir, §2.5]. The key is that all of the axioms except 2 and 5 are first order
(modulo 2). Obviously, C has standard Z, so we only need to see that countable
closure property holds. [Zil05, Lemma 5.12] proves this, but the Khovanskii-system
definition of ecl gives a shorter proof.

Suppose f0, . . . , fn−1 is a Khovanskii system with coefficients from Q(C). The
inequation in the system says that the Jacobian of f0, . . . , fn−1 is nonzero. Then
we can use the implicit function theorem to find an open set around each solution
to the Kohvanskii system such that it is the only solution in that set: Let f(y,x) =
(f0(x), . . . , fn−1(x)) and note f(0, a) = 0. By the implicit function theorem, there
is

• open U 3 0
• open Va 3 a
• g : U → V such that

{(x,y) ∈ U × Va : f(x,y) = 0} = {(x, g(x)) : x ∈ U}
The key point is that the only solution in Va is a. Thus, the solutions are isolated
in the complex topology, and there are only countably many of them.

6In doing this, we need to ensure that F1 has no nonstandard kernel elements. First, in the
Q-linear span of F0 and a, we have that exp(f + qa) = 1 iff exp(f)aq = 1 iff exp(f) = 1 and
q = 0. So no new kernel elements are in this span. To get F1, we form the ELA-closure and
then the strong exponential algebraic closure of this span, each of which does not add new kernel
elements.
More details are in Kirby [Kir11].
7Potentially not the first chronologically, but at least the first ones that people got excited about.
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Thus, C is the Zilber field of dimension continuum. So, C ∼= B. †

The language of quasiminimality: One facet of quasiminimal classes is that
quantifier free types must be the right one, i. e., Galois type. This is not true in
the current language, so we expand it. For each algebraic variety V ⊂ Gr+n

a ×Gr+n
m

that is defined and irreducible over Q, we set the r-ary relation

RV,n(x) := ∃y∀m ∈ Qr+n((x,y, exp(x), exp(y)) ∈ V ∧(∑
i<r

mixi +
∑
i<n

mi+ryi = 0→ ∧r≤i<r+nmi = 0

)
)

Set L = 〈+, 0, λ·, RV,n〉λ∈Q. Note the similarity between these relations and the
statement of Axiom 4

∀p ∈ P ′∀a ∈ F r∃x ∈ F n∀m ∈ Q[
(x, exp x) ∈ Vp ∧

(∑
i<n

mixi +
∑
i<r

mn+iai = 0→ ∧i<nmi = 0

)]
If (Vp)p∈P is a parameterizing variety in (x, exp x) and (Wp)p∈P is the parame-

terizing variety in (x,y, exp x, exp y) requiring only the same relationship between
y and exp y, then an instance of Axiom 4 is equivalent to

∀p ∈ P ′∀a ∈ F rRWp,n(a)

The reason we change the language is the following lemma of Zilber:

Fact 0.4 ( [Zil05].5.7). Suppose A ≺ B and a,b are finite tuples so Aa ≺ B and
Ab ≺ B. If there is an isomorphism so FAa ∼=FA

FAb
8 that sends a to b, then

tpqf,L(a/A) = tpqf,L(b/A).

Additionally, making the language more relational means that structures can be
smaller.

We call this change conservative since L has the same definable sets as the
original language (in some Zilber field):

First, note that V = V (x1x2 = x3) and RV,0 define the graph of multiplication:

RV,0(a1, a2, a3) ⇐⇒ a1a2 = a3

and W = V (x2 = x′1) and RW,0 define the graph of exponentiation:

RV,0(a1, a2) ⇐⇒ a2 = exp(a1)

Second, Q and, thus, each RV,n is definable in each member of EC∗st,ccp.

8FX is the field generated by X ∪ exp(X) with exp regarded as a partial function defined only
on X. Note that this is not a structure in the original language, but is a structure in the new
one.
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Zilber initially proves that this is a quasiminimal class in [Zil05], but Bays and
Kirby fill some gaps/make some corrections. Note, following [BHH+12], proving
excellence is not necessary.
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