
SHELAH’S OMITTING TYPES THEOREM IN EXCRUCIATING
DETAIL

WILL BONEY

We aim to prove Shelah’s Omitting Types Theorem for AECs [Sh394, Lemma
8.7] in detail. The proofs in [Bal09, Theorem 14.8] and [MaSh285, Proposition 3.3]
are only special cases, with [MaSh285] being a very helpful guide. We’ve introduced
a slight generalization (allowing the Mα’s to be different models, rather than just
one), but this is standard.

Sebastien Vasey initially pointed this result out to me and conversations with
him were very helpful in working through the details.

We assume a familiarity with AECs, Galois types, etc.; a reference for these
is [Bal09].

One nonstandard piece of notation:

Definition 1. If N ≺ M and p ∈ gS(N) with χ ≤ ‖N‖, then we say that M
omits p/Eχ iff for every c ∈ M , there is some N− ≺ N of size ≺ χ such that c
does not realize p � N−.

Note that this is implied by omitting p and is the same under χ-tameness (or
weak tameness if N is saturated). So we can think of this as a strong form of
type omission. However, this is weaker than omitting the set of restrictions of
p, {p � N− : N− ≺ N and ‖N−‖ ≤ χ}. Each of the types in that set might be
realized in M ; however, there is no element of M that simultaneously realizes them
all.

In the following all types are of length < ω.

Theorem 2 (Shelah’s Omitting Types Theorem). Let K be an AEC with LS(K) ≤
χ ≤ λ with

(1) N0 ≺ N1 with ‖N0‖ ≤ χ and ‖N1‖ = λ;
(2) Γ0 = {p0

i : i < i∗0} are Galois types over N0; and
(3) Γ1 = {p1

i : i < i∗1} are Galois types over N1 with i∗1 ≤ χ.

Suppose that, for each α < (2χ)+, there is Mα ∈ K such that

(1) ‖Mα‖ ≥ iα(λ);
(2) Mα omits Γ0; and
(3) Mα omits p1

i /Eχ for each i < i∗1.

This material is based upon work done while the author was supported by the National Science
Foundation under Grant No. DMS-1402191.
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Then we can find Φ ∈ Υ[K]; increasing, continuous 〈N ′n ∈ K≤χ : n ≤ ω〉; and
increasing Galois types p1

i,n ∈ gS(N ′n) for n < ω, i < i∗1 such that

(1) N0 = N ′0 = EMτ (∅,Φ);
(2) for each n < ω, we have N ′n ≺ EMτ (n,Φ) and fn : EMτ (n,Φ)→ Mαn for

some αn < (2χ)+ such that fn(N ′n) ≺ N1.
(3) p1

i,n := f−1
n (p1

i � fn(N ′n)) ∈ gS(N ′n); and

(4) for every infinite1 I, EMτ (I,Φ) omits Γ0 and omits any type that extends
{p1

i,n : n < ω} in the following strong sense: if p1
i,∗ ∈ gS(N ′ω) extends each

p1
i,n and J ⊂ I is of size n < ω with a ∈ EMτ (J,Φ), then a doesn’t realize

p1
i,∗ � N

′
n = p1

i,n.

Afterwards, we will state some corollaries and have a discussion, but for now:
the proof!

Proof: Stage 1 will build a language τ+; it is essentially a language from Shelah’s
Presentation Theorem with some extra aspects tacked on. Stage 2 builds a “tree
of indiscernibles.” Stages 3 uses this tree to build the template Φ and finishes the
proof.

Stage 1: Set τ+ := τ ∪ {F i
n : i < χ}, as in Shelah’s Presentation Theorem. Let

M be a τ structure such that N1 ≺ M and M omits p1
i /Eχ for each i < i∗1. We

describe a procedure to expand M to a τ+-structure M+ with certain properties:
we want to define a cover {Ma ∈ K : a ∈M} with the following properties:

(1) If a ∈ N0, then Ma = N0 (so in particular, this is true for a = ∅)
(2) If a ∈ N1, then Ma ≺ N1

(3) For all a, set Ma,1 := Ma ∩N1. Then

N0 ≺Ma,1 ≺Ma

(4) For i < i∗1, we have p1
i � (Ma,1) is omitted in Ma.

We build this cover in ω many steps, building increasing covers {Mn
a : n < ω} that

get closer and closer.

n = 0: Nothing special happens here. Start with M0
a = N0 for all a ∈ N0.

Then extend this to a cover of N1, and then to a cover of M . Note we ignore
conditions (3) and (4) here. Also, if a ∈ N1, we will not change M0

a in the rest of
the construction.

2n + 1: Suppose the increasing covers up to 2n are built. We take care of (3)
in this step. First note that, for a ∈ N1, (3) is guaranteed, so no change should be
done. This step is itself made up of ω many steps. Do the following construction
by induction on the length of a:
It might be the case that

(
M2n

a ∪
⋃

b(aM
2n+1
b

)
∩N1 is not a τ -structure or in K.

1Note if I is not infinite, then N ′
ω does not appear as a strong substructure.
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However, we can find N1,0 ≺ N1 containing it of size χ. Then find N2,0 ≺ M
containing M2n

a ∪
⋃

b(aM
2n+1
b of size χ. Iterate this process so

• N1,i+1 ≺ N1 contains N2,i ∩N1 and is of size χ; and
• N2,i+1 ≺M contains N1,i+1

In the end, set M2n+1
a := ∪i<ωN2,i. Then we have M2n+1

a ∩N1 = ∪i<ωN1,i, which
is a strong substructure of N1, as desired. Also, since we included the

⋃
b(aM

2n+1
b

term, this will form an increasing cover.

2n + 2: In this step, we take care of (4). Note that, by the odd step, M2n+1
a,1 :=

M2n+1
a ∩ N1 ≺ N1 is well defined. Again, we are going to expand our cover
{M2n+1

a : a ∈M} by induction on the length of a:
Suppose that M2n+2

b is defined for all proper subtuples b of a. For each i < i∗1, it
might be the case that m ∈M2n+1

a realizes p �M2n+1
a,1 . For each such i and m, pick

Mi,m ≺ M of size χ such that m does not realize p � Mi,m; such a model exists
precisely because M omits p/Eχ. An important point is that m ∈ N1 implies that
m ∈M2n+1

a,1 and, therefore, already omits p �M2n+1
a,1 . In particular, if a ∈ N1, then

no expansion is undertaken in this step. Then let M2n+2
a ≺ M be of size χ such

that it contains⋃
b(a

M2n+2
b ∪

⋃
{Mi,m : i < i∗1,m ∈M2n+1

a for which this is defined}

Note that the fact we can choose M2n+2
a ∈ Kχ uses that |i∗1| ≤ χ.

At stage ω, set Ma = ∪n<ωMn
a . Note that {Ma : a ∈ M} forms a cover of

M because covers are closed under increasing unions. The first two conditions
are satisfied because they were satisfied at stage 0 and no later stage changed M0

a

when a ∈ N1. For (3), notice that

Ma ∩N1 =
⋃
n<ω

M2n+1
a ∩N1 =

⋃
n<ω

M2n+1
a,1

which is an increasing union of strong substructures of N1. For (4), let m ∈ Ma

for some a. Then m appears in some M2n+1
a . By construction, m does not realize

p �M2n+2
a . This carries upwards, so m does not realize p �Ma.

Now that we have this cover, we can expand M to a τ+ structure M+, where
F i
n is n-ary by letting {F i

`(a) : i < χ} enumerate Ma such that the first n many

functions are projections. The expansions of Ma and Ma,1 to τ+ are denoted M∗
a

and M∗
a,1, respectively.

Now, for each α < (2χ)+, set M+
α to be this expansion of Mα. Furthermore, we

will denote the parts of the cover as Mα,a and Mα,a,1 (so their expansion are M∗
α,a

and M∗
α,a,1). Since they never get changed, we require the the expansions of N0

and N1 (denoted N+
0 and N+

1 ) are the same in each M+
α . †Stage 1
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Given a τ+-structure M+ and X ⊂ M+, clτ
+

M+(X) denotes the closure of X

under the functions of τ+. By construction, we will have clτ
+

M+(X) � τ ≺M+.

Stage 2: We want to define some indiscernibles via Morley’s Method. Rather
than mucking about with nonstandard models of set theory, we use (in a sense) a
tree of indiscernibles from M+ (if that doesn’t make sense, ignore it or see after the
proof). Recall ‖N1‖ = λ. The goal is to build, for n < ω and α < (2χ)+, injective
functions fnα with domain iα(λ) and range Mβn(α) for some α ≤ βn(α) < (2χ)+

such that

(1) for fixed α < (2χ)+ and n < ω, we have that
(a) N∗(α,n) := M∗

βn(α),a,1 is a constant τ+-substructure of Mβn(α) for a =

fnα (i1), . . . , fnα (in), where i1 < · · · < in < iα(λ); and
(b) qαn := tpτ

+

qf (a/N∗(α,n);M
+
βn(α)) is constant with the same notation;

(2) for each n < ω, there is some N∗(·,n) ⊂ N+
1 such that

(a) N∗(·,0) � τ = N0;

(b) for m < n, there is a τ+-embedding hm,n : N∗(·,m) → N∗(·,n) that form a
coherent system;

(c) for each α < (2χ)+, there is gnα : N∗(·,n)
∼= N∗(α,n); and

(d) for all α < (2χ)+ and m < n, there is α < β < (2χ)+ such that
〈fnα (i) : i < iα(λ)〉 is an increasing2 subset of 〈fmβ (i) : i < iβ(λ)〉 and
the following commutes

N∗(·,m)

hm,n //

gmβ

��

N∗(·,n)

gnα
��

N∗(β,m)

id // N∗(α,n)

; and
(3) fixing n < ω, for each α < (2χ)+, we have that

qn := (gnα)−1 (qαn) ∈ S(N∗(·,n))

is constant (as a syntactic type), as is

p1
(i,n) := (gnα)−1

(
p1
i � (N∗(α,n) � τ)

)
∈ gS(N∗(·,n) � τ)

for each i < i1∗ (as a Galois type in K).

The construction of this is standard; one thing to note is the fixing of the Galois
type in (3). In Stage 3, the syntactic types will correspond to Φ and the Galois
types will correspond to pieces of p1

i .

2According to the order inherited by the enumerations
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Construction: We do this by induction on n < ω and, inside that, on α <
(2χ)+.

n = 0: For this case, there’s not much to do: N∗(α,0) always has universe N0 and

we can pick g0
α to be the identity. Set β0(α) = α and let f 0

α enumerate Mα.

n + 1: This is where it gets fun and, more importantly, where we see the impor-
tance of our cardinal arithmetic. Fix α < (2χ)+. First, we color n+ 1-tuples from
{fnα+ω(i) : i < iα+ω(i)} with their qf-type over N+

1 ; recall that the n-tuples all have

the same type by construction. Erdős-Rado tells us that iα+ω(λ) → (iα(λ))n+1
2λ ;

well, really it says iα+n(λ)+ → (iα(λ)+)
n+1
iα(λ), but this follows. Thus, we can find

Y n+1
α ⊂ iα+ω(λ) such that this type is constant. Note that this already gives us

(1) one the construction: {fnα+ω(i) : i ∈ Y n+1
α } are n + 1-indiscernibles over N+

1 ,

so for each M∗
βn(α),a,1 and tpτ

+

qf (a/N∗(α,n);M
+
βn(α)) are constant for all n + 1-tuples

a that are increasing from {fnα+ω(i) : i ∈ Y n+1
α }. Call these N̂∗(α,n+1) and q̂αn+1 for

now; not every α will make it and there’s some reindexing, so it’s premature to
define the unhatted version yet.

From this, we have that N̂∗(α,n+1) ⊃ N∗(α+ω,n). Now, color each α < (2χ)+ with the

isomorphism type of N̂∗(α,n+1) overN∗(α+ω,n) through (gnα+ω)−1; this needlessly obtuse

phrase means that we extend (gnα+ω)−1 to an isomorphism containing the N̂∗(α,n+1)

in the domain (call this tα in a notational respite) and we compare isomorphism
types of

{(
tα(N̂∗(α,n+1)), N

∗
(·,n)

)
: α < (2χ)+

}
We color (2χ)+ many things with ≤ 2χ many colors, so we can find X0

n+1 ⊂ (2χ)+

of size (2χ)+ such that this isomorphism type is constant. Once we’ve fixed this set,

we can fix a representative of this class N∗(·,n+1)–pick, for instance, N̂∗
(minX0

n+1,n+1)
–;

a τ+-embedding hn,n+1 := gn
minX0

n+1
from N∗(·,n) to N∗(·,n+1)–from which we form the

rest of the hm,n+1–; and isomorphisms ĝn+1
α : N∗(·,n+1)

∼= N̂∗(α,n+1) such that the
following picture commutes

N∗(·,n)

hn,n+1 //

gnα+ω

��

N∗(·,n+1)

ĝn+1
α
��

N∗(α+ω,n)
// N̂∗(α,n+1)
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To find ĝn+1
α , use the fact that α,minX0

n+1 ∈ X0
n+1 to find

sα : tα(N̂∗(α,n+1))
∼=N(·,n) tminX0

n+1
(N∗(·,n+1))

Then set ĝn+1
α := t−1

α ◦ s−1
α ◦ tminX0

n+1
and chase the following diagram

N̂∗(α,n+1)

tα // tα(N̂∗(α,n+1))
sα // tminX0

n+1
(N∗(·,n+1)) N∗(·,n+1)

t
minX0

n+1oo

N∗(α+ω,n)

(gnα+ω)−1

//

OO

N(·,n)

88pppppppppppp

eeJJJJJJJJJJ

N∗
(minX0

n+1+ω,n)

(gn
minX0

n+1+ω
)−1

oo

OO

This guarantees (2). We shrink again to get (3), but this part will give us (2)
in any set we shrink to.

Now color each α ∈ X0
n+1 with the pair

• (ĝn+1
α )−1(q̂αn+1); and

• (ĝnα)−1
(
p1
i � (N̂∗(α,n+1) � τ)

)
Again, there are (2χ)+ many objects colored with 2χ many colors, so there is
X1
n+1 ⊂ X0

n+1 such that each of these are constant.

Now we are ready to pick our final sets. We have sets that Y n+1
α of order type

iα(λ) and X1
n+1 of order type (2χ)+. For some j in the proper set, we will use

Y n+1
α (j) and X1

n+1(j) to denote the jth element of that set under the only possible
ordering (the ordering inherited from the ordinals). Thus, we finish by setting, for
each α < (2χ)+ and i < iα(λ),

• βn+1(α) := βn
(
X1
n+1(α) + ω

)
• fn+1

α (i) := fn
X1
n+1(α)+ω

(
Y n+1
X1
n+1(α)

(i)
)

• N∗(α,n+1) := N̂∗
(X1

n+1(α),n+1)

• qαn+1 = q̂
X1
n+1(α)

n+1

• gn+1
α = ĝn+1

X1
n+1(α)

• qn+1 = (gn+1
α )−1(qαn+1)

• p1
(i,n+1) = (gn+1

α )−1(p1
i (N

∗
(α,n+1 � τ))

noting that the last two items don’t depend on α. This is a notational mess, but
we essentially just replace every instance of α by the αth member of X1

n+1 and
every instance of i by the ith member of Y n+1

α .
Then this works. †Construction, Stage 2

Stage 3: Here, we use the objects constructed in Stage 2 to define the appro-
priate Φ.
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First, we want to show that both the qn’s and p1
(i,n)’s are increasing with n (after

being hit with hm,n).

Claim 3. For every s ⊂ n with |s| = m, qsn � (N∗(·,m)) = hm,n(qm). In particular,

hm,n(qm) ⊂ qn.

Proof of Claim 3: Set s = {s1 < · · · < sm} ⊂ n. Fix α < (2χ)+ and
i1 < · · · < in < iα(λ) and write a = fnα (i1), . . . , fnα (in). By (2.b), there is β > α
and j1 < · · · < jm < iβ(λ) such that fnβ (j`) = fnα (is`) for ` ≤ n. Then

qm = (gmβ )−1
(
tpτ

+

qf (fmβ (j1), . . . , fmβ (jm)/N∗(β,m),M
+
βm(β))

)
= (gmβ )−1

(
tpτ

+

qf (as/N∗(β,m),M
+
βm(β))

)
= h−1

m,n ◦ (gnα)−1
(
tpτ

+

qf (as/N∗(α,n),M
+
βm(β)) � N

∗
(β,m)

)
= h−1

m,n ◦ (gnα)−1 ((qαn)s) � (gnα)−1(N∗(β,m))

= h−1
m,n

(
qsn � N∗(·,m)

)
hm,n(qm) = qsn � N∗(·,m)

as desired. †Claim 1

Claim 4. Let i < i1∗. For m < n, p1
(i,n) �

(
N∗(·,m) � τ

)
= hm,n(p1

(i,m)).

Proof of Claim 4: This is similar to the above, but without mucking around
with the fnα ’s. Let α < (2χ)+ and let β be as in (2.b), although we only use the
commutative diagram. Then

p1
(i,m) = (gmβ )−1

(
p1
i � (N∗(β,m) � τ)

)
= h−1

m,n ◦ (gnα)−1
([
p1
i � (N∗(α,n) � τ)

]
� (N∗(β,m) � τ)

)
= h−1

m,n((gnα)−1
(
p1
i � (N∗(α,n) � τ)

)
� (gnα)−1(N∗(β,m) � τ))

hm,n(p1
(i,m)) = p1

(i,n) � (N∗(·,m) � τ)

†Claim 2

This means that the sequences {h−1
0,n(qn) : n < ω} and {h−1

0,n(N∗(·,n)) : n < ω} are

increasing. Remove this directed nonsense by setting q̄n := h−1
0,n(qn) and N̄∗(·,n) :=

h−1
0,n(N∗(·,n)); note that the first is increasing by Claim 1 and the second is increasing

by construction.
Now set Φ = ∪n<ω q̄n and N̄∗(·,ω) = ∪n<ωN̄∗(·,n). Moreover, 〈N̄∗(·,n) � τ : n < ω〉 is an

≺-increasing sequence, so N̄∗(·,ω) � τ ∈ K; however, there’s no reason to expect that

N̄∗·,ω � τ ≺ M or appears as some strong substructure of it. Set N̄(·,n) := N̄∗(·,n) � τ
and similarly for N̄(·,ω). Moreover, q̄n is a type over N̄∗(·,n), so we can add a constant
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to the language of Φ for each element of N̄∗(·,n). The following claim says that this
changes nothing.

Claim 5. Φ is a template proper for linear orders in K such that τ(Φ) has constants
for every element in N̄(·,ω); one could write this as Φ ∈ Υχ[KN̄(·,ω)

].

Proof of Claim 5: That Φ is a template for K (rather than KN̄(·,ω)
) already

follows. The only potential problem in the additional step is that, for n < m, qn
doesn’t specify the diagram over N∗(·,m). However, using Claim 1, we can see this
is fine because any way of enlarging an n-tuple to an m-tuple gives the same qm
type, which specifies this diagram. †Claim 3

Thus, we have that, for any I, EMτ(N(·,ω))(I,Φ) ∈ KN̄(·,ω)
. This gives a canonical

isomorphism of N̄(·,ω) into EMτ (I,Φ), so we will assume that this is just the
identity.

We have now defined everything from the theorem statement: N ′n is (the canoni-
cal copy of) N̄∗(·,n) in EMτ (n,Φ) and p1

i,n is (the corresponding copy of) h−1
0,n(p1

(i,n)) ∈
gS(N̄∗(·,n) � τ). The first three conditions are clear. The omission of Γ0 is standard:

given a ∈ EMτ (I,Φ), we have that a ∈ EMτ (J,Φ) for some finite J ⊂ I. Then we
can find f : EMτ (J,Φ)→N0 M by construction. Then, EMτ (J,Φ) omits Γ0 since
M does. Since Γ0 are types over N0, this is preserved by f , so a doesn’t realize
any type in Γ0.

The final piece of the theorem is contained in the next claim.

Claim 6. Fix i < i1∗ and let p1
(i,ω) be any type over N ′ω that extends each p1

i,n.

For any infinite I, EMτ (I,Φ) omits each p1
(i,ω). In particular, if finite J ⊂ I and

x ∈ EMτ (J,Φ), then x does not realize p1
i,|J |.

Proof of Claim 6: Let J ⊂ I be finite with n := |J |. Then

J � q̄n = h−1
0,n ◦ (gnα)−1

(
tpτ

+

qf (a/N∗(α,n);M
+
βn(α))

)
where a = fnα (i1), . . . , fnα (in) for some/any α < (2χ)+ and i1 < · · · < in <
iα(λ); the some/any doesn’t matter because of the construction, especially (1).
This equality of quantifier free types (pushed from (gnα)−1) gives rise to a τ+-
isomorphism

h : EMτ (J,Φ) ∼= clτ
+

M+
βn(α)

(a)

that extends h−1
0,n ◦ (gnα)−1. At long last, reaching back to (4) from the Stage 1,

we obtain that clτ
+

M+
βn(α)

(a) � τ omits the Galois types p1
i � N(α,n) for each i < i1∗

(recalling here that N(α,n) = M∗
βn(α),a,1). Hitting this with h (and recalling that it

extends h−1
0,n ◦ (gnα)−1), we get that EMτ (J,Φ) omits

h−1
(
p1
i � N(α,n)

)
= h−1

0,n ◦ (gnα)−1
(
p1
i � N(α,n)

)
= p̄1

(i,n) = p1
i,n
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as desired. †Claim 4, Stage 3, Theorem

Some commentary is in order. First note that the ω-compactness of AECs
means that some p1

i,∗ always exists. The omission of Γ0 is not new and follows
from previous work of Morley; a good proof appears in [Bal09, Appendix A]. The
proof is the origin of the (cryptic?) phrase of “by Morley’s Method.” There are
typically two ways of presenting this proof: either with a tree of indiscernibles (as
we did) or with nonstandard models of set theory. The basic approach is to use the
fact that M is big compared to N0 to find indiscernibles by successive applications
of Erdős-Rado; however, well-foundedness means that we can’t actually apply it ω-
many times. The tree of indiscernibles because we essentially build a tree of height
ω that has no branch, but the extensions contain enough of the same information
to pretend we do. The nonstandard model method just builds a model with exactly
the illfoundedness needed to apply Erdős-Rado theorem.

My feeling is that these methods are essentially equivalent and indeed the cre-
ation of the nonstandard model needs some version of the theorem to already be
proved. The advantage of the nonstandard method is that it is slicker and requires
less bookkeeping: every property you want to preserve is just coded as a first-order
property of some Vχ. On the other hand, the advantage of the tree method is that
it’s easier to work through the details and see what implies what. Since I was
(initially) skeptical of this theorem and wanted to work through the details, the
tree method made more sense to use.

The strange conclusion of this theorem–the strong omission of some reflection
of Γ1–is noteworthy for a few reasons.

• The price to pay (in terms of model size) is much less: i(2χ)+(λ) typically
grows much slower than i(2λ)+ .
• The hypothesis requires a tameness like omission of p1

i , while the conclusion
gives a locality like omission of ∪n<ωp1

i,n.
• Just like M doesn’t actually necessarily contain any indiscernibles, the

canonical copies of the models N ′n don’t necessarily cohere or increase in
M . Thus, N ′ω doesn’t need to appear in M .
• Relatedly, we have crafted some type omission out of thin air!

The following are some basic applications. First we spell out what happens in
the first order case.

Corollary 7. Let T be some first order theory, N ≺ M be models of T , and
Γ = {pi | i < µ ≤ ‖N‖} a set of types over N such that ‖M‖ ≥ i(2|T |)+(‖N‖) and
M omits Γ.

For any N0 ≺ N of size |T |, there are

• a template Φ;
• increasing continuous 〈N ′n | n ≤ ω〉 that model T of size T ; and
• fn : N ′n → N with N0 = N ′0;
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such that for any infinite I, EMτ (I,Φ) omits⋃
n<ω

f−1
n (pi � fn(N ′n))

Proof: We use Theorem 2 with Γ0 being empty and Γ1 being Γ. This AEC is
very tame and local, so omitting p/E|T | is the same as omitting p and there is only
one type extending all f−1

n (pi � fn(N ′n)). †

Corollary 8. Let T be some first order theory, N ≺ M be models of T , and
Γ = {pi | i < µ ≤ ‖N‖} a set of types over N such that ‖M‖ ≥ i(2|T |)+(‖N‖) and
M omits Γ.

For any N0 ≺ N of size |T |, there is some N ′ � N0 of size |T |, template Φ, and
p∗i ∈ S(N ′) extending pi � N ′ such that no EMτ (I,Φ) realizes p∗i .

This doesn’t seem like a very good increase. However, it turns out to be very
useful to use not λ-saturated models to build a template that always builds un-
saturated models. Here we contrast the two results available:

(1) Morley: If M is not λ+-saturated and ‖M‖ ≥ i(2λ)+ , then there is a
template such that for any infinite I, EMτ (I,Φ) is not λ-saturated.
Proof: By Morley’s Method ;). M omits some p ∈ S(A) with |A| = λ.
Add this to the language and use, e. g., [Bal09, Theorem A.3.(1)] to build
a template omitting p.

(2) Shelah: If M is not λ+-saturated and ‖M‖ ≥ i(2|T |)+(λ), then there is a
template such that for any infinite I, EMτ (I,Φ) is not |T |+-saturated.
Proof: By Shelah’s Method, I guess. M omits some p ∈ S(N) with
‖N‖ = λ. Since first-order logic is < ω-tame, M omits p/E|T |. Then we
can use Corollary 8 to find a model N0, a type p′ ∈ S(N0), and a template
Φ such EMτ (I,Φ) always omits p′. In particular, it is not |T |+-saturated.

Indeed, this second point was how Shelah used it in [Sh394] and Makkai and
Shelah used it to prove the second part of the main theorem in [MaSh285] (Vasey
has generalized this to AECs in [Vas, Theorem 3.3]).

Looking at Lλ,ω (or some other logic), we can get variations by allowing Γ0 and
Γ1 to be syntactic types (or even a mix). The proof is exaclty the same, except
that the appropriate sort of type is used. The only property of types we really use
are isormophism preservation.

Here is an interesting question: As I’ve tried to emphasize, the connection be-
tween the types of Γ1 and the type omitted is weak. Indeed the uses of Shelah’s
Omitting Type Theorem I’m aware of never really use what the type actually is,
just that there is an template that generates not LS(K)+-saturated models. Is
there some result that requires this fine analysis? Is there some tighter connection
that one can use for the types omitted?
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