
THE FEFERMAN-VAUGHT THEOREM

WILL BONEY

We give a self-contained proof of the Feferman-Vaught theorem. Our presenta-
tion follows Chang-Keisler [CK, Proposition 6.3] and the proof is due to, of course,
Feferman and Vaught [FV].

Fix a signature L throughout.

Definition 0.1. A formula φ(x1, . . . , xn) from L(L) is L′-determined by 〈σ;ψ1, . . . , ψk〉
iff

(1) ψi is a formula from L′(L) with free variables in x1, . . . , xn;
(2) σ(y1, . . . , yk) is a formula in L′(LBA) which is monotonic, i. e.,

TBA ` ∀z1, . . . , zk, z′1, . . . , z′k

(
σ(z1, . . . , zk) ∧

∧
i

zi ≤ z′i → σ(z′1, . . . , z
′
k)

)
(3) If F is a filter over I, Mi are L-structures for each i ∈ I, and f1, . . . , fn ∈∏

Mi, then∏
Mi/F � φ ([f1]F , . . . , [fn]F ) ⇐⇒ P(I)/F � σ

(
X1/F, . . . , Xk/F

)
where Xj := {i ∈ I : Mi � ψj (f1(i), . . . , fn(i))}.

Theorem 0.2 (Feferman-Vaught). Every first-order formula is FO-determined.

Proof: We first define the determining formulas (by induction) and then show
they work.
Work by induction on φ(x1, . . . , xn):

• Atomic:
φ is determined by 〈y = 1;φ〉.
• Negation: φ is determined by 〈σ(y1, . . . , yk);ψ1, . . . , ψk〉.
¬φ is determined by 〈¬σ(−y1, . . . ,−yk);¬ψ1, . . . ,¬ψk〉.
• Conjunction: For ` = 1, 2, φ` is determined by 〈σ`(y1, . . . , yk`);ψ

`
1, . . . , ψ

`
k`
〉.

WLOG, we enlarge the free variables of φ1 and φ2 to be the same. φ1∧φ2 is
determined by 〈σ1(y1, . . . , yk1)∧σ2(yk1+1, . . . , yk1+k2);ψ

1
1, . . . , ψ

1
k1
, ψ2

1, . . . , ψ
2
k2
〉.

This material is based upon work done while the author was supported by the National Science
Foundation under Grant No. DMS-1402191.
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• Existential: φ(x, x1, . . . , xn) is determined by 〈σ;ψ1, . . . , ψk〉.
Let s1, . . . , s2k enumerate P({1, . . . , k}) with si = {i}. For 1 ≤ i ≤ 2k, set

θi(x1, . . . , xn) := ∃x
∧
j∈si

ψj(x, x1, . . . , xn)

with the convention that the empty conjunction is true. Set τ(y1, . . . , y2k)
to be

∃z1, . . . , z2k

(∧
i

zi ≤ yi

)
∧

 ∧
si∪sj=s`

zi ∩ zj = z`

 ∧ σ(z1, . . . , zk)


Then ∃xφ(x, x1, . . . , xn) is determined by 〈τ ; θ1, . . . , θ2k〉.

Now we show these sequences determine φ by induction. Property (1) is always
obvious.

• Atomic: φ(x1, . . . , xn) = R(x1, . . . , xn)
Functions are handled similarly, although we cannot necessarily code func-
tions as relations. y = 1 is clearly monotonic. For the other property,∏

Mi/F � R ([f1]F , . . . , [fn]F ) ⇐⇒ X := {i ∈ I : Mi � R (f1(i), . . . , fn(i))} ∈ F

⇐⇒ 1−X ∈ F dual

⇐⇒ P(I)/F � X/F = 1

• Negation: φ = ¬ψ
Suppose z,y are such that ¬σ(−y) and yi ≤ zi. Then −yi ≥ −zi and, by
the monotonicity of σ, we get ¬σ(−z), as desired. Also note that

Xj = {i ∈ I : Mi � ¬ψj (f1(i), . . . , fn(i))}
= −{i ∈ I : Mi � ψ (f1(i), . . . , fn(i))} = −Y j

Then∏
Mi/F � ¬φ ([f1]F , . . . , [fn]F ) ⇐⇒ Mi/F 6� φ ([f1]F , . . . , [fn]F )

⇐⇒ P(I)/F 6� σ(Y1/F, . . . , Yk/F )

⇐⇒ P(I)/F � ¬σ(−X1/F, . . . ,−Xk/F )

• Conjunction: φ = φ1 ∧ φ2

The conjunction of monotonic formulas is monotonic.∏
Mi/F � φ ([f1]F , . . . , [fn]F ) ⇐⇒(∏

Mi/F � φ1 ([f1]F , . . . , [fn]F )
)
∧
(∏

Mi/F � φ2 ([f1]F , . . . , [fn]F )
)
⇐⇒(

P(I)/F � φ1(X1
1/F, . . . , X

k1
1 )/F

)
∧
(
P(I)/F � φ2(X1

2/F, . . . , X
k2
2 )/F

)
⇐⇒

P(I)/F � φ1(X1
1/F, . . . , X

k1
1 /F ) ∧ φ2(X1

2/F, . . . , X
k2
2 /F )
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• Existential: φ = ∃xψ(x,y)
τ is monotonic because ≤ is transitive.
First, suppose that

∏
Mi/F � ∃xφ (x, [f1]F , . . . , [fn]F ). By induction, there

is an [f0]F ∈
∏
Mi/F such that

P(I)/F � σ
(
X0/F, . . . , Xk/F

)
where Xj := {i ∈ I : Mi � φj (f0(i), . . . , fn(i))}. Setting Y ` := {i ∈ I :
Mi � ∃x

∧
j∈s` ψj (x, f1(i), . . . , fn(i))}, we see that

⋂
j∈s` X

j ⊂ Y `. Thus,

these intersection are the witness that P(I)/F � τ
(
Y 1/F, . . . , Y 2k/F

)
.

Second, suppose that P(I)/F � τ
(
Y 1/F, . . . , Y 2k/F

)
. Then there are

Z1, . . . , Z2k such that

P(I)/F � Zi/F ≤ Y i/F

P(I)/F � Zi/F ∩ Zj/F = Z`/F

P(I)/F � σ
(
Z1/F, . . . , Zk/F

)
By the finite completeness of F , there is X ∈ F such that

Zi ∩X ⊂ Y i

Zi ∩ Zj ∩X = Z` ∩X
If i ∈ X, set ti := {j ≤ k : i ∈ Zj}. Then there is m < 2k such that
sm = ti. Note that i ∈ Y m. Then there is mi ∈ Mi such that Mi �∧

j∈ti ψj (mi, f1(i), . . . , fn(i)). If i 6∈ X, let mi ∈Mi arbitrary.

Set W j := {i ∈ I : Mi � ψj (mi, f1(i), . . . , fn(i))}. If i ∈ Zj ∩ X, then
j ∈ ti. This gives that i ∈ W j. Thus, Zj/F ⊂ W j/F . By monotonicity,
we get

P(I)/F � σ
(
Z1/F, . . . , Zk/F

)∏
Mi/F � ψ ([i 7→ mi]F , [f1]F , . . . , [fn]F )∏
Mi/F � ∃xψ (x, [f1]F , . . . , [fn]F )

†
My interest in the Feferman-Vaught Theorem came from hoping that the ZFC

existence of countably complete filters (as opposed to the harder question of count-
ably complete ultrafilters) would lead to some interesting compactness-like results
in nonelementary model theory.

However, this turns out not to be the case. Indeed, as we exhibit below, the
countably complete filter product of torsion groups need not be torsion. Reex-
amining the proof, the key property used in proving that a countably complete
ultraproduct preserves disjunctions is
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given any partition of a U -large set into countably many pieces, one of the pieces
is U -large.

It is an easy exercise to show that this precisely characterizes countably complete
ultrafilters.

Example 0.3. Let F be the club filter on ω1 and 〈Gi : i < ω1〉 be torsion groups
of infinite exponent. We claim that

∏
Gi/F is not torsion. First find countably

many disjoint, stationary sets 〈Xn : n < ω〉. Define a function f ∈
∏
Gi by, if

i ∈ Xn, picking f(i) ∈ Gi to have order larger than n. In particular, n · f(i) 6= 0
for all i ∈ Xn.

By the Feferman-Vaught Theorem, for each n < ω,∏
Gi/F � n · [f ]F = 0

iff {i < ω1 : Gi � n · f(i) = 0} ∈ F . Since that set is disjoint from a stationary
set, it contains no club. Thus,

∏
Gi/F is not torsion.

This example was particularly easy because the type consisted of atomic formu-
las.
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