▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

## Tameness and Abstract Elementary Classes

#### Will Boney University of Illinois at Chicago

2014-2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



- Give a basic overview of AECs
- Discuss tameness and its applications
- Pose some open questions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

# Outline

- Give a basic overview of AECs
- Discuss tameness and its applications
- Pose some open questions

An important note: I've included some dates to give a sense of time frame, but there's some imprecision in the the mixing of publication dates and circulation of preprints dates, the latter being more common with more recent work.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Beyond First Order Model Theory

There are many classes of mathematical objects that are not first order axiomatizable:

# Beyond First Order Model Theory

There are many classes of mathematical objects that are not first order axiomatizable:

- locally finite groups
- 2 torsion modules
- Iclassically valued fields
- elassification over a predicate
- **o** quasiminimal classes like Zilber fields
- omitting types, infinitary logic, and extra quantifiers

# Beyond First Order Model Theory

There are many classes of mathematical objects that are not first order axiomatizable:

- locally finite groups
- 2 torsion modules
- Iclassically valued fields
- elassification over a predicate
- **o** quasiminimal classes like Zilber fields
- omitting types, infinitary logic, and extra quantifiers

Rather than exploring each class individually, the framework of Abstract Elementary Classes allows one to analyze them in a uniform manner.

### What is an Abstract Elementary Class?

- $({\cal K},\prec_{\cal K})$  is an Abstract Elementary Class (AEC) iff
  - 0. every element of K is a L(K) structure;
  - $\bullet \prec_{\mathcal{K}} \text{ is a partial order on } K;$
  - **2** if  $M \prec_{K} N$ , then  $M \subseteq N$ ;
  - **③**  $(K, \prec_K)$  respects L(K) isomorphisms;
  - if  $M_0 \prec_K M_2$ ,  $M_1 \prec_K M_2$ , and  $M_0 \subseteq M_1$ , then  $M_0 \prec_K M_1$ ;
  - Suppose (M<sub>i</sub> ∈ K : i < α) is a ≺<sub>K</sub>-increasing continuous chain, then
    - ∪<sub>i<α</sub>M<sub>i</sub> ∈ K and, for all i < α, we have M<sub>i</sub> ≺<sub>K</sub> ∪<sub>i<α</sub>M<sub>i</sub>; and
      if there is some N ∈ K so that, for all i < α, we have M<sub>i</sub> ≺<sub>K</sub> N, then we also have ∪<sub>i<α</sub>M<sub>i</sub> ≺<sub>K</sub> N.; and
  - (Lowenheim-Skolem number) LS(K) is the minimal infinite cardinal above |L(K)| so for any M ∈ K and A ⊂ M, there is some N ≺<sub>K</sub> M such that A ⊂ N and ||N|| = |A| + LS(K).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### Why Abstract Elementary Classes?

• The AEC axioms capture the model theoretic structure that exists *without the compactness theorem*.

### Why Abstract Elementary Classes?

• The AEC axioms capture the model theoretic structure that exists *without the compactness theorem*.

What's the point of AECs?

#### "Goal"

Shelah's Categoricity Conjecture: For every  $\lambda$ , there is  $\mu_{\lambda}$  such that, if K is an AEC with  $LS(K) = \lambda$  that is categorical in some cardinal  $\geq \mu_{\lambda}$ , then it is categorical in every cardinal  $\geq \mu_{\lambda}$ .

### Why Abstract Elementary Classes?

• The AEC axioms capture the model theoretic structure that exists *without the compactness theorem*.

What's the point of AECs?

#### "Goal"

Shelah's Categoricity Conjecture: For every  $\lambda$ , there is  $\mu_{\lambda}$  such that, if K is an AEC with  $LS(K) = \lambda$  that is categorical in some cardinal  $\geq \mu_{\lambda}$ , then it is categorical in every cardinal  $\geq \mu_{\lambda}$ .

#### Goal

To develop classification theory for AECs.

# Shelah's Presentation Theorem

Everything I've said so far about AECs is semantic, but there is a syntactic description.

#### Theorem (Shelah's Presentation Theorem)

If K is an AEC with  $LS(K) = \lambda$ , then there is some  $L_1 \supset L$  of size  $\lambda$ , an  $L_1$ -theory  $T_1$ , and a set  $\Gamma$  of quantifier free types such that

 $K = PC(T_1, \Gamma, L) := \{M_1 \upharpoonright L : M_1 \vDash T_1 \text{ and omits } \Gamma\}$ 

# Shelah's Presentation Theorem

Everything I've said so far about AECs is semantic, but there is a syntactic description.

#### Theorem (Shelah's Presentation Theorem)

If K is an AEC with  $LS(K) = \lambda$ , then there is some  $L_1 \supset L$  of size  $\lambda$ , an  $L_1$ -theory  $T_1$ , and a set  $\Gamma$  of quantifier free types such that

$$K = PC(T_1, \Gamma, L) := \{M_1 \upharpoonright L : M_1 \vDash T_1 \text{ and omits } \Gamma\}$$

Note that PC classes themselves are pretty poorly behaved: they fail

- the chain axioms;
- the existence of an LS number; and
- Shelah's Categoricity Conjecture
   Silver showed there is a PC class that is categorical exactly at
   κ = □<sub>α</sub> for α limit.

### Convention and embeddings

- Writing  $f: M \to N$  means that f is a K-embedding, i.e.  $f(M) \prec N$ .
- We write K for  $(K, \prec_K)$  and  $\prec$  for  $\prec_K$ .
- We assume that K has a monster model  $\mathfrak{C}$ .
  - $\mathfrak{C}$  is  $\mu$ -model homogeneous for very large cofinality  $\mu$ .
  - The existence is equivalent to amalgamation, joint embedding, and no maximal models (amalgamation is the key property most of the time)
  - Gives a very simplified definition of Galois types

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Galois types

#### Definition

 $A = \langle a_i : i \in I \rangle$  and  $B = \langle b_i : i \in I \rangle$  have the same Galois type over M, written as gtp(A/M) = gtp(B/M), iff

there is  $f \in Aut_M \mathfrak{C}$  so that  $f(a_i) = b_i$  for all  $i \in I$ 

# Galois types

#### Definition

 $A = \langle a_i : i \in I \rangle$  and  $B = \langle b_i : i \in I \rangle$  have the same Galois type over M, written as gtp(A/M) = gtp(B/M), iff

there is  $f \in Aut_M \mathfrak{C}$  so that  $f(a_i) = b_i$  for all  $i \in I$ 

#### Definition

$$gS^{\alpha}(M) = \{gtp(\langle a_i : i < \alpha \rangle / M) : a_i \in \mathfrak{C}\}$$

If  $M \prec N$  and p = gtp(a/N), then  $p \upharpoonright M = gtp(a/M)$ .

This definition is purely semantic. In first order, they agree with semantic types.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Syntactict vs. Galois

- Syntactic types are very local.
- If two syntactic types differ, you can see this difference finitely: there is a finite parameter set and finite subset of the tuples that already witness the idfference

# Syntactict vs. Galois

- Syntactic types are very local.
- If two syntactic types differ, you can see this difference finitely: there is a finite parameter set and finite subset of the tuples that already witness the idfference

#### Key Question

Do the restrictions of Galois types determine the type?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



- Give a basic overview of AECs
- Discuss tameness and its applications
- Pose some open questions



As they say, a definition can't be wrong:

Definition (Grossberg-VanDieren, 2004?)

An AEC K is  $< \kappa$ -tame iff for all  $M \in K$  and  $p, q \in gS(M)$ , the two following equivalent conditions hold:

 if p ≠ q, then there is M<sup>-</sup> ≺ M of size < κ such that p ↾ M<sup>-</sup> ≠ q ↾ M<sup>-</sup>.

• if  $p \upharpoonright M^- = q \upharpoonright M^-$  for all  $M^- \prec M$  of size  $< \kappa$ , then p = q.

" $\kappa$ -tameness" is "<  $\kappa$ <sup>+</sup>-tameness."

"( $< \kappa, \lambda$ )-tameness" restricts the size of the domain to  $\lambda$ .

### Tameness - A little history

- The first time something like tameness shows up is in [Sh394], where Shelah deduces *weak tameness* from categoricity and amalgamation
- Grossberg and VanDieren isolated κ-tameness in the course of the latter's thesis for an argument about Galois stability and later proved a categoricity transfer result from it
- Later authors (especially Baldwin) introduced various parameterizations and tweaks (locality, compactness, type shortness)

## Variations of tameness

Tameness and locality are two of several "locality" properties for Galois types:

#### Definition

K is κ-local iff for all M = ∪<sub>i<κ</sub>M<sub>i</sub> and p ≠ q ∈ gS(M), there is j < κ such that p ↾ M<sub>j</sub> ≠ q ↾ M<sub>j</sub>.

# Variations of tameness

Tameness and locality are two of several "locality" properties for Galois types:

- K is κ-local iff for all M = ∪<sub>i<κ</sub>M<sub>i</sub> and p ≠ q ∈ gS(M), there is j < κ such that p ↾ M<sub>j</sub> ≠ q ↾ M<sub>j</sub>.
- K is κ-type short iff for all X, Y of size κ and M such that gtp(X/M) ≠ gtp(Y/M), there is X<sub>0</sub> ⊂ X and Y<sub>0</sub> ⊂ Y such that gtp(X<sub>0</sub>/M) ≠ gtp(Y<sub>0</sub>/M).

# Variations of tameness

Tameness and locality are two of several "locality" properties for Galois types:

- K is κ-local iff for all M = ∪<sub>i<κ</sub>M<sub>i</sub> and p ≠ q ∈ gS(M), there is j < κ such that p ↾ M<sub>j</sub> ≠ q ↾ M<sub>j</sub>.
- K is κ-type short iff for all X, Y of size κ and M such that gtp(X/M) ≠ gtp(Y/M), there is X<sub>0</sub> ⊂ X and Y<sub>0</sub> ⊂ Y such that gtp(X<sub>0</sub>/M) ≠ gtp(Y<sub>0</sub>/M).
- K is κ-compact iff for all M = ∪<sub>i<κ</sub>M<sub>i</sub>, if p<sub>i</sub> ∈ gS(M<sub>i</sub>) in increasing, then there is an upper bound p ∈ gS(M).

# Variations of tameness

Tameness and locality are two of several "locality" properties for Galois types:

- K is κ-local iff for all M = ∪<sub>i<κ</sub>M<sub>i</sub> and p ≠ q ∈ gS(M), there is j < κ such that p ↾ M<sub>j</sub> ≠ q ↾ M<sub>j</sub>.
- K is κ-type short iff for all X, Y of size κ and M such that gtp(X/M) ≠ gtp(Y/M), there is X<sub>0</sub> ⊂ X and Y<sub>0</sub> ⊂ Y such that gtp(X<sub>0</sub>/M) ≠ gtp(Y<sub>0</sub>/M).
- K is κ-compact iff for all M = ∪<sub>i<κ</sub>M<sub>i</sub>, if p<sub>i</sub> ∈ gS(M<sub>i</sub>) in increasing, then there is an upper bound p ∈ gS(M).
- These can also be parameterized based on the length of types involved.

# Variations of tameness

Tameness and locality are two of several "locality" properties for Galois types:

- K is κ-local iff for all M = ∪<sub>i<κ</sub>M<sub>i</sub> and p ≠ q ∈ gS(M), there is j < κ such that p ↾ M<sub>j</sub> ≠ q ↾ M<sub>j</sub>.
- K is κ-type short iff for all X, Y of size κ and M such that gtp(X/M) ≠ gtp(Y/M), there is X<sub>0</sub> ⊂ X and Y<sub>0</sub> ⊂ Y such that gtp(X<sub>0</sub>/M) ≠ gtp(Y<sub>0</sub>/M).
- K is κ-compact iff for all M = ∪<sub>i<κ</sub>M<sub>i</sub>, if p<sub>i</sub> ∈ gS(M<sub>i</sub>) in increasing, then there is an upper bound p ∈ gS(M).
- These can also be parameterized based on the length of types involved.
- Note I'm being vague about some of the other parameters: the length of tameness/locality/compactness and the size of the domain of type shortness

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## How far from syntactic are we?

- An important/powerful class of AECs are those that are  $<\kappa\text{-tame}$  and -type short for some  $\kappa$
- In these classes, Galois types are determined by their restriction to small pieces, where 'small' means '<  $\kappa$  sized'

# How far from syntactic are we?

- An important/powerful class of AECs are those that are  $<\kappa\text{-tame}$  and -type short for some  $\kappa$
- In these classes, Galois types are determined by their restriction to small pieces, where 'small' means '<  $\kappa$  sized'
- Doing this allows many first order arguments built on formulas to be redone in the AEC context (more on this later)

# How far from syntactic are we?

- An important/powerful class of AECs are those that are  $<\kappa\text{-tame}$  and -type short for some  $\kappa$
- In these classes, Galois types are determined by their restriction to small pieces, where 'small' means '<  $\kappa$  sized'
- Doing this allows many first order arguments built on formulas to be redone in the AEC context (more on this later)
- This intuition has recently been made explicit

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Galois Morleyizations and tameness

#### Definition (Vasey)

Given K and  $\kappa$ , the  $< \kappa$ -Galois Morleyization is obtained by adding predicates of lengths less than  $\kappa$  for all  $< \kappa$ -Galois types over the emptyset.

• I can now compare the semantic  $gtp_{\kappa}(a/M)$  with the syntactic  $tp_{qf}(a/M^{*\kappa})$ .

## Galois Morleyizations and tameness

#### Definition (Vasey)

Given K and  $\kappa$ , the  $< \kappa$ -Galois Morleyization is obtained by adding predicates of lengths less than  $\kappa$  for all  $< \kappa$ -Galois types over the emptyset.

• I can now compare the semantic  $gtp_{\kappa}(a/M)$  with the syntactic  $tp_{qf}(a/M^{*\kappa})$ .

#### Proposition (Vasey, 2015)

K is  $< \kappa$ -tame and type short iff Galois types map bijectively to syntactic types in the  $< \kappa$ -Galois Morleyization.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

# Examples

#### Definition

An AEC K is  $< \kappa$ -tame iff for all  $M \in K$  and  $p, q \in S(M)$ , if  $p \neq q$ , then there is  $M^- \prec M$  of size  $< \kappa$  such that  $p \upharpoonright M^- \neq q \upharpoonright M^-$ .

### Examples

#### Definition

An AEC K is  $< \kappa$ -tame iff for all  $M \in K$  and  $p, q \in S(M)$ , if  $p \neq q$ , then there is  $M^- \prec M$  of size  $< \kappa$  such that  $p \upharpoonright M^- \neq q \upharpoonright M^-$ .

- quasiminimal classes are ℵ<sub>0</sub>-tame (Zilber)
- Hrushovski fusions are ℵ<sub>0</sub>-tame (Villaveces-Zambrano, 2005)
- Homogeneous model theory is  $\aleph_0$ -tame
- <sup>⊥</sup>N is ℵ<sub>0</sub>-tame when N is an abelian group (Baldwin-Ekloff-Trlifaj. 2007)
- torsion modules over a PID are  $\aleph_0$ -tame (B, 2014)
- classically valued fields are ℵ0-tame (B, 2015)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

# General ways of getting tameness

#### Proposition

If K has a "nonforking-like" notion satisfying Uniqueness, Local Character, Base Monotonicity, and Invariance, then the class is tame (for some parameters depending on what the equivalent of  $\kappa(\perp)$  is).

# General ways of getting tameness

#### Proposition

If K has a "nonforking-like" notion satisfying Uniqueness, Local Character, Base Monotonicity, and Invariance, then the class is tame (for some parameters depending on what the equivalent of  $\kappa(\perp)$  is).

#### Theorem (B, 2013)

Let K be an AEC essentially below  $\kappa$ .

- If  $\kappa$  is weakly compact, then K is  $(<\kappa,\kappa)$ -tame.
- If  $\kappa$  is measurable, then K is  $(<\lambda,\lambda)$ -tame when cf  $\lambda = \kappa$ .
- If  $\kappa$  is nearly  $\theta$ -strongly compact, then K is  $(< \kappa, \theta)$ -tame.
- If  $\kappa$  is strongly compact, then K is  $< \kappa$ -tame.

### Non-examples

- For each k < ω, there is ψ<sub>k</sub> ∈ L<sub>ω1,ω</sub> that is (ℵ<sub>0</sub>, ℵ<sub>k</sub>)-tame, but not (ℵ<sub>k</sub>, ℵ<sub>k+1</sub>)-tame. (Hart-Shelah 1990, Baldwin-Kolesnikov 2009)
- Short exact sequences of an almost free, non-free, non-Whitehead group of size κ are not (< κ, κ) tame (Baldwin-Shelah 2008)
- The large cardinals used on the previous slide are near strict (Shelah 2013?, B-Unger 2015)

### Large cardinals and eventual tameness

- Global tameness principles are closely connected with large cardinal principles
- Shelah has an example showing the following:
  - If regular  $\kappa$  has no  $\theta^+$ -complete, uniform measure on it, there is K with  $LS(K) = \theta^{\omega}$  that is not  $\kappa$ -local

#### Proposition

Suppose  $\mu^{\omega} < \kappa$  for every  $\mu < \kappa$ .

$$\begin{pmatrix} \text{Every AEC with } LS(K) < \kappa \\ \text{is } \kappa\text{-local} \end{pmatrix} \iff \begin{pmatrix} \kappa \text{ is measurable or} \\ \text{a limit of measurables} \end{pmatrix}$$

Applications

### Large cardinals and eventual tameness

Say  $\kappa$  is almost-strongly compact iff for every  $\mu < \kappa$ , every  $\kappa$ -complete filter can be extended to a  $\mu$ -complete ultrafilter iff for all  $\mu < \kappa \leq \lambda$ , there is a  $\mu$ -complete, fine ultrafilter on  $P_{\kappa}\lambda$ .

Applications

### Large cardinals and eventual tameness

Say  $\kappa$  is almost-strongly compact iff for every  $\mu < \kappa$ , every  $\kappa$ -complete filter can be extended to a  $\mu$ -complete ultrafilter iff for all  $\mu < \kappa \leq \lambda$ , there is a  $\mu$ -complete, fine ultrafilter on  $P_{\kappa}\lambda$ .

#### Proposition (B-Unger, 2015)

• Suppose 
$$\mu^{\omega} < \kappa$$
 for every  $\mu < \kappa$ .

$$\begin{pmatrix} \text{Every AEC with } LS(K) < \kappa \\ \text{is} < \kappa \text{-tame} \end{pmatrix} \iff \begin{pmatrix} \kappa \text{ is almost-strongly} \\ \text{compact} \end{pmatrix}$$

#### 2

$$\left( egin{array}{c} {\sf Every} \; {\sf AEC} \; {\sf is} \ {\sf eventually} \; tame \end{array} 
ight) \iff \left( egin{array}{c} {\sf There} \; {\sf are} \; class \; many \ {\sf almost-strongly} \; compact \; cardinals \end{array} 
ight)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



- Give a basic overview of AECs
- Discuss tameness and its applications
- Pose some open questions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Applications of tameness

There are three areas of classification theory that tameness has seen application to:

- Categoricity transfer
- Nonforking
- Stability Transfer

Applications

# Categoricity Transfer

#### Theorem (Grossberg-VanDieren, 2006ish)

Suppose K has a monster model, is  $\chi$ -tame, and categorical in some  $\lambda^+ > LS(K)^+ + \chi$ . Then K is categorical in all  $\mu \ge \lambda^+$ .

This is Shelah's Categoricity Conjecture for successors in tame AECs with a monster model.

# SCC from Large Cardinals

### Corollary (B, 2013)

Suppose there are class many strongly compact cardinals. If an AEC is categorical in a successor cardinal above  $\mu(LS(K)) = \min\{\kappa > LS(K) : \kappa \text{ is strongly compact }\}, \text{ then it is categorical in all } \lambda \ge \mu(LS(K)).$ 

This uses results of Grossberg-VanDieren, Shelah, and Boney and a little more. Note that there is *no* monster model assumption.

# Nonforking notions

- A main line of research is trying to find good notions of nonforking in various classes of AECs.
- Unfortunately, there's not (yet?) a single definition that specializes to all other in each circumstance.
- Still have some good results, especially when tameness holds (and a monster model exists)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



### Definition

Define 
$$A \stackrel{(ch)}{\underset{M_0}{\cup}} N$$
 iff for all  $a \in {}^{<\kappa}A$  and  $N^- \prec N$  of size  $< \kappa$ ,  $gtp(a/N^-)$  is realized in  $M_0$ .

This is like the first-order notion of coheir, replacing "finitely satisfiable" with "<  $\kappa$  satisfiable."

# Coheir

### Definition

Define 
$$A \stackrel{(ch)}{\underset{M_0}{\cup}} N$$
 iff for all  $a \in {}^{<\kappa}A$  and  $N^- \prec N$  of size  $< \kappa$ ,  $gtp(a/N^-)$  is realized in  $M_0$ .

#### Theorem (B-Grossberg, 2013)

```
Suppose \kappa > LS(K). If
```

- K is fully  $< \kappa$ -tame and -type short;
- K does not have the κ-order property; and
   (ch)
- O  $\bigcirc$  satisfies existence/extension

then  $\stackrel{(ch)}{\downarrow}$  is a "stable-like" independence relation.



If  $\kappa$  is strongly compact, then this is simpler.

Theorem (B-Grossberg)

Suppose  $\kappa > LS(K)$  is strongly compact and  $\stackrel{(ch)}{\cup}$  satisfiers existence. If K does not have the  $\kappa$ -order property, then  $\kappa$  is a "superstable-like" independence relation.

Existence (in this case) follows from categoricity  $\lambda$  with cf  $\lambda > \kappa$ .

## Good $\lambda$ -frames

- Shelah's focus in this area (especially recently) has been on good λ-frame s. This is a "superstable-like" notion of nonforking in a single cardinal; also comes equipped with a notion of basic types.
- Two things are done: first, prove a frame exists in some cardinal and, second, try to transfer this to larger cardinals.
- The second part uses a construction ≥ s that always exists, but doesn't always satisfy the desired properties

Both parts of this project have used non-ZFC combinatorics to get nonstructure results.

# Tameness and frame existence

Previous results about the existence of frames in general required strong model and set theoretic hypotheses:

Theorem (Shelah, 2001)

lf

- $2^{\lambda} < 2^{\lambda^+} < 2^{\lambda^{++}}$  and  $WDmld(\lambda^+)$  is not  $\lambda^{++}$ -saturated;
- K is categorical in  $\lambda$  and  $\lambda^+$ ; and

• 
$$1 \leq I(\lambda^{++}, K) < \mu_{unif}(\lambda^{++}, 2^{\lambda^+});$$

then there is a good  $\lambda^+$ -frame for K.

Basic types are  $\lambda$ -rooted minimal types, nonforking is if the base contains the root. (Note:  $\mu_{unif}(\lambda^{++}, 2^{\lambda^+})$  is "basically"  $2^{\lambda^{++}}$ .)

### Tameness and frame existence

Tameness can replace the set-theoretic hypotheses *and* simplify the model-theoretic ones.

#### Theorem (Vasey, 2014)

Suppose K has a monster model, is  $\mu$ -tame, and is categorical in  $\lambda$  with (1) cf  $\lambda > \mu$  or (2)  $\lambda > \mu = \beth_{\mu}$ . Then K has a type-full good  $\geq \lambda$ -frame.

In (1), p does not fork over M iff there is  $M_0 \prec M$  of size  $\mu$  so that p does not  $\mu$ -split over  $M_0$ . In (2), nonforking is  $\mu$ -coheir.

### Tameness and frame transfer

Previous results about the transfer of frames required strong model and set theoretic hypotheses:

Theorem (Shelah, pre-2009) If K has a good  $\lambda$ -frame and •  $2^{\lambda} < 2^{\lambda^+} < 2^{\lambda^{++}}$  and  $WDmId(\lambda^+)$  is not  $\lambda^{++}$ -saturated; and •  $I(\lambda^{++}, K(\lambda^+ - saturated)) < \mu_{unif}(\lambda^{++}, 2^{\lambda^+});$ Then there is a good  $\lambda^+$ -frame for  $(K', \prec')$ , where  $K'_{\lambda^+} \subset K_{\lambda^+}$  and  $\prec' \subset \prec$ .

Applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### Tameness and frame transfer

### Proposition (B, 2013)

If K has amalgamation and a good  $\lambda$ -frame **s**, then

 $\geq$  **s** satisfies Uniqueness iff *K* is  $\lambda$ -tame for basic types

### Tameness and frame transfer

### Proposition (B, 2013)

If K has amalgamation and a good  $\lambda$ -frame **s**, then

 $\geq$  **s** satisfies Uniqueness iff *K* is  $\lambda$ -tame for basic types

#### Theorem (B, B-Vasey 2014)

Suppose K has amalgamation and a good  $\lambda\text{-frame}\ \mathbf{s}$  and is  $\lambda\text{-tame}.$  Then

 $\mathbf{0} \geq \mathbf{s}$  is a good frame;

# Tameness and frame transfer

### Proposition (B, 2013)

If K has amalgamation and a good  $\lambda\text{-frame }\mathbf{s}\text{, then}$ 

 $\geq$  **s** satisfies Uniqueness iff K is  $\lambda$ -tame for basic types

### Theorem (B, B-Vasey 2014)

Suppose K has amalgamation and a good  $\lambda\text{-frame}\ \mathbf{s}$  and is  $\lambda\text{-tame}.$  Then

- $\mathbf{0} \geq \mathbf{s}$  is a good frame;
- (≥ s)<sup><∞</sup> is a good frame (i.e. independent sequences satisfy the nonforking properties); and
- K is  $(\lambda + |\alpha|)$ -tame for basic types of length  $\alpha$ .

## More independence relations

Vasey has some recent work that looks to get global independence relations from more natural hypotheses. One version is:

#### Theorem (Vasey 2015)

If K has a monster model, is  $< \kappa$ -tame and type short for  $\kappa = \beth_{\kappa} > LS(K)$ , and is categorical in  $\mu > (\kappa^{<\kappa})^{+5}$ , then there is a superstable-like global independence relations on models of size  $\ge \mu$  and types of length  $\le (\kappa^{\kappa})^{+6}$ .

# Stability Transfer

Applications of these concepts give rise to stability transfer results.

#### Theorem (Grossberg-VanDieren 2004ish)

If K is Galois stable in some  $\mu > \beth_{(2^{LS(K)})^+}$  and  $\chi$ -tame for  $\chi < \mu$ , then K is Galois stable in every  $\kappa = \kappa^{\mu}$ .

#### Theorem (Baldwin-Kueker-VanDieren 2006)

Let K with amalgamation be Galois stable in  $\kappa$  and  $\kappa$ -weakly tame. Then K is Galois stable in  $\kappa^{+n}$  for all  $n < \omega$ .

#### Theorem (Vasey 2014)

Suppose K is  $< \chi$ -tame and stable in some  $\mu \ge \chi$ . Then there is some  $\kappa < \beth_{(2\chi)^+}$  such that K is stable in all  $\lambda \ge \mu$  such that  $\lambda^{<\kappa} = \lambda$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



- Give a basic overview of AECs
- Discuss tameness and its applications
- Pose some open questions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



- Tameness is a relatively recent notion (2004?)
- Still lots of unanswered questions and open problems

# Structural Property vs. Model theoretic property

Is tameness a structural property/dividing line OR is it just a model theoretic property? That is, can we find some non-structure from non-tameness or is it just something that some AECs have and some don't.

# Structural Property vs. Model theoretic property

Is tameness a structural property/dividing line OR is it just a model theoretic property? That is, can we find some non-structure from non-tameness or is it just something that some AECs have and some don't.

Vasey's result on frame existence can be rephrased as a partial answer in the good direction: Suppose K is an AEC with a monster model and is categorical in a high enough cardinal, then

```
K is \mu-tame for some \mu
iff
K has a good \geq \chi-frame for some \chi
```

## More examples and applications

- Examples of AECs is a pretty underdeveloped field.
- Can we find more examples of non-tame AECs?
- Find some concrete (and mathematically interesting) AECs that are tame and apply the above independence relations/ideas.

## Less global tameness principles

- We saw that global tameness principles were large cardinals in disguise.
- Is there any hope of getting ZFC tameness principles in "nice" classes of AECs?
  - e.g. the class can be defined recursively or in a particular descriptive set-theoretic class
- Phrased another way: All the known non-examples are pathological in one way or another. Is there a natural AEC that is not tame?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Length of Tameness

We could parameterize tameness based on the length of tuples.

#### Definition

K is  $\kappa$  tame for  $\alpha$ -types iff for every  $p, q \in gS^{\alpha}(M)$ , if  $p \neq q$ , there is  $M^{-} \prec M$  of size  $\kappa$  such that  $p \neq q$ .

Obviously,  $\alpha < \beta$  and tameness for  $\beta\text{-types}$  implies tameness for  $\alpha\text{-types}.$ 

# Length of Tameness

We could parameterize tameness based on the length of tuples.

#### Definition

K is  $\kappa$  tame for  $\alpha$ -types iff for every  $p, q \in gS^{\alpha}(M)$ , if  $p \neq q$ , there is  $M^{-} \prec M$  of size  $\kappa$  such that  $p \neq q$ .

Obviously,  $\alpha < \beta$  and tameness for  $\beta\text{-types}$  implies tameness for  $\alpha\text{-types}.$ 

#### Question

Does tameness for  $\alpha$ -types imply tameness for  $\beta$ -types? If not, is there a natural condition that causes it to?

# Length of Tameness

We could parameterize tameness based on the length of tuples.

#### Definition

K is  $\kappa$  tame for  $\alpha$ -types iff for every  $p, q \in gS^{\alpha}(M)$ , if  $p \neq q$ , there is  $M^{-} \prec M$  of size  $\kappa$  such that  $p \neq q$ .

Obviously,  $\alpha < \beta$  and tameness for  $\beta\text{-types}$  implies tameness for  $\alpha\text{-types}.$ 

#### Question

Does tameness for  $\alpha$ -types imply tameness for  $\beta$ -types? If not, is there a natural condition that causes it to?

The work of B-Vasey on independent sequences gives a partial (but unsatisfactory) answer.

Tameness

Application

Questions



Any questions?

