
TAMENESS AND FRAMES REVISITED

WILL BONEY AND SEBASTIEN VASEY

Abstract. We study the problem of extending an abstract inde-
pendence notion for types of singletons (what Shelah calls a good
frame) to longer types. Working in the framework of tame ab-
stract elementary classes, we show that good frames can always be
extended to types of independent sequences. As an application,
we show that tameness and a good frame imply Shelah’s notion of
dimension is well-behaved, complementing previous work of Jar-
den and Sitton. We also improve a result of the first author on
extending a frame to larger models.
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1. Introduction

Good λ-frames are an axiomatic notion of independence in abstract
elementary classes (AECs) introduced by Shelah [She09, Chapter II].
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They are one of the main tools in the classification theory of AECs.
They describe a relation “p does not fork over M” for certain types
of singletons over models of size λ. The frame’s nonforking relation is
required to satisfy properties akin to those of forking in a first-order
superstable theory. The definition can be generalized to that of a good
(< α, [λ, θ))-frame, where instead of types of singletons one allows types
of sequences of less than α-many elements, and instead of the models
being of size λ, one allows their size to lie in the interval [λ, θ).

There are at least two questions one can ask about frames: first, under
what hypotheses do they exist? Second, can we extend them? That
is, assuming there is a frame can we extend it to give a nonforking
definition for larger models or longer1 types?

Shelah tackles these problems in [She09, Chapters II and III], but the
answers use strong model-theoretic hypotheses (typically categoricity
in two successive cardinals λ and λ+ together with few models in λ++),
as well as set-theoretic hypotheses (like the weak generalized continuum
hypothesis, 2λ < 2λ

+
)2.

Recently, the two questions above have been studied in the frame-
work of tame AECs. Tameness is a locality property of AECs isolated
by Grossberg and VanDieren [GV06b] from an argument in [She99].
Grossberg and VanDieren have shown [GV06c, GV06a] that Shelah’s
eventual categoricity conjecture from a successor holds in tame AECs,
and the first author [Bon14b] (building on work of Makkai-Shelah
[MS90]) has shown that tameness follows from a large cardinal axiom.
Many examples of interest are also known to be tame.

Under tameness, the second author has shown that frames exist in ZFC
assuming a reasonable categoricity hypothesis [Vas16b], and the first
author has shown [Bon14a] that frames can be extended to larger mod-
els under the assumption of tameness for types of length two. In this
paper, we further study the frame extension question in tame AECs.
We look at the problem of elongating the frame: extending it to longer
types.

Let us give discuss a natural approach to the problem and its short-
comings. In stable first-order theories, we have that ab^

A
B if and only

if a^
A
B and b^

Aa
Ba. One might think that this allows us to define

1The length of a type is the length or indexing set of a tuple that satisfies it. See
Section 2.2 for a definition.

2Shelah also looks at the existence problem in a more global setup and in ZFC
in [She09, Chapter IV] but does not study the extension problem there.
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forking for types of all lengths if we have a definition of forking for
singleton types (as in [GL00]). However, this turns out not to work
in full generality, as good frames only define forking over models3. We
might want to say that ab^

M
N if and only if there are M ≺ M ′ ≺ N ′

with N ≺ N ′ and a ∈ M ′ such that a^
M
N and b^

M ′
N ′. This means

that a choice must be made for the models N ′ and, especially, M ′ and
this choice can cause problems. In particular, if M ′ is too big, then
uniqueness of nonforking extensions can fail. This does not cause issues
in the first-order context essentially because there is a prime/minimal
set containing A and a (namely Aa).

There are two options to work around this issue. The first option is to
assume the existence of a unique prime/minimal extension of Ma; She-
lah says that the frame is weakly successful [She09, Definition III.1.1]
if this is the case. Shelah proved [She09, Section II.6] that weakly suc-
cessful frames can be elongated as desired without any assumption of
tameness. Shelah has also shown [She09, II.5] that a good λ-frame is
weakly successful when the underlying AEC has few models in λ++ and
certain set-theoretic hypotheses hold. It is not known whether being
weakly successful follows from tameness4.

The second option is to strengthen the condition on nonforking, essen-
tially setting ab^

A
B if and only if a^

A
B and b^

A
Ba (the noncanonical

choice of a cover for Ba is less important). This loses some information
about nonforking, so only works for certain kinds of types: types of in-
dependent sequences. As we show, this has the advantage of working
in a larger class of AECs, i.e. those with frames that are not weakly
successful, although we do assume tameness to prove the symmetry
property.

This brings us to the precise statement of the main result of this paper.

Theorem 1.1. Let K be an AEC with amalgamation and F = [λ, θ)
be an interval of cardinals.

(1) Assume s satisfies the axioms of a good F -frame, except pos-
sibly symmetry. Then s can be extended to a certain frame

3Note that an example of Shelah (see [HL02, Section 4]) shows that there ex-
ists a superstable homogeneous diagram where extension (over sets) fails for any
reasonable independence notion.

4After the initial submission of this paper, it has been shown that being weakly
successful follows from a stronger locality property: full tameness and shortness
[Vas16a, Section 11].
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s<θ which satisfies the axioms of a good (< θ,F)-frame, except
possibly for symmetry.

(2) If K is λ-tame, then both s and s<θ also satisfy symmetry.

The following two questions are open.

Question 1.2.

• If s is a good frame in a tame AEC, must s be weakly successful?
• Is there an example of a good λ-frame (necessarily not weakly

successful) that has no better extension to longer types than
independent sequences?

As has already been alluded to, in Theorem 1.1 the frame s is elongated
by use of independent sequences (see Definition 4.1 here, or Shelah
[She09, Definition III.5.2]). Independent sequences in that context have
been previously studied by Shelah [She09, III.5] and Jarden and Sitton
[JS12]. Throughout these studies, several additional assumptions have
appeared–such as s being weakly successful or having continuity of
serial independence5–that we are able to eliminate or replace with the
hypothesis of tameness.

We present two applications of Theorem 1.1. The first involves a natu-
ral notion of dimension that Shelah introduced with the goal of building
a theory of regular types for AECs [She09, Definition III.5.12]: Let us
define the dimension of a type p in an ambient model N , dim(p,N)
to be the size of a maximal independent set of realizations of p in N .
In the first-order case, Shelah [She90, III.4.21.(2)] shows that, under
stability, every infinite maximal independent set of realizations of p
has the same size. In the AEC framework, Shelah [She09, III.5.14] first
showed that this held when the frame is weakly successful, and Jar-
den and Sitton [JS12] have refined these hypotheses. The analysis of
this paper allows us to show that the dimension is well-behaved in any
tame AEC with a good frame (see Corollary 6.1 and the surrounding
discussion). This gives a natural nonelementary framework in which a
theory of regular types could be studied.

The second application involves the project of extending a frame to
larger models using tameness. As mentioned above, the first author
has shown that this is possible if one assumes tameness for types of
length two. Analyzing the elongations of frames allows us to give an
aesthetic improvement: we remove this strange assumption and replace
it with only tameness for types of length one (see Corollary 6.9 and the

5This and other variations on continuity are defined and explored in Section 5.1.
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preceding discussions). While no example of an AEC that is tame for
types of length one and not for length two is known, thinking about this
statement led us to the main theorem of this paper. Further, we are
told that Rami Grossberg conjectured Corollary 6.9 already in 2006 (he
told it to Adi Jarden and John Baldwin); our result proves Grossberg’s
original conjecture.

Since this paper was first circulated (June 2014), several applications
of Corollary 6.9 have been found. They include Shelah’s eventual cate-
goricity conjecture for universal classes [Vasb, Vasc], as well as a down-
ward categoricity transfer for tame AECs [Vas17] (the latter actually
uses the theory of independent sequences in good frames developped
in Section 4). In [BV], the authors show that a natural good frame
appearing in the Hart-Shelah example is not weakly successful, and in
[Vasa] the second author studies an example of Shelah where a good
frame cannot be extended to all types. These examples show that this
paper strictly generalizes Shelah’s study of independent sequences in
[She09, Section III.5].

The paper is structured as follows. In Section 2, we review background
in the theory of AECs. In Section 3, we give the definition of good
frames and prove some easy general facts. In Section 4, we define
independent sequences and show how to use them to extend a frame for
types of singletons to a frame for longer types. We show all properties
are preserved in the process, except perhaps symmetry. In Section 5,
we give conditions under which symmetry also transfers and show how
to use it to define a well-behaved notion of dimension. In Section 6, we
prove the promised applications to dimension and tameness.

This paper was written while the authors were working on Ph.D. theses
under the direction of Rami Grossberg at Carnegie Mellon University
and they would like to thank Professor Grossberg for his guidance and
assistance in our research in general and in this work specifically. The
authors would also like to thank the referee for their helpful report that
greatly assisted the clarity and presentation of this paper.

2. Preliminaries

2.1. Abstract elementary classes. We assume the reader is familiar
with the definition of an abstract elementary class (AEC) and the basic
related concepts. See Grossberg’s [Gro02] or Baldwin’s [Bal09] for an
introduction to AECs. A more advanced introduction to frames can
be found in [She09, Chapter II]
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For the rest of this section, fix an AEC K. We denote the partial
ordering on K by ≺, and write M � N if M ≺ N and M 6= N .

For K an abstract elementary class and F an interval6 of cardinals of
the form [λ, θ), where θ > λ ≥ LS(K) is either a cardinal or ∞, let
KF := {M ∈ K | ‖M‖ ∈ F}. We write Kλ instead of K{λ}, K≥λ
instead of K[λ,∞) and K≤λ instead of K[LS(K),λ].

The following properties of AECs are classical:

Definition 2.1. Let F be an interval of cardinals as above.

(1) KF has amalgamation if for any M0 ≺M` ∈ KF , ` = 1, 2 there
exists N ∈ KF and f` : M` −−→

M0

N , ` = 1, 2.

(2) KF has joint embedding if for any M` ∈ KF , ` = 1, 2 there
exists N ∈ KF and f` : M` → N , ` = 1, 2.

(3) KF has no maximal models if for any M ∈ KF there exists
N �M in KF .

2.2. Galois types, stability, and tameness. We assume familiarity
with Galois types (see [Gro02, Section 6]). For M ∈ K and α an
ordinal, we write Sα(M) for the set of Galois types of sequences of
length α over M . We write S<α(M) for

⋃
β<α S

β(M) and S<∞(M) for⋃
β∈OR S

β(M). We write S(M) for S1(M) and Sna(M) for the set of
nonalgebraic 1-types over M , that is:

Sna(M) := {gtp(a/M ;N) | a ∈ N\M,M ≺ N ∈ K}

From now on, we will write tp(a/M ;N) for gtp(a/M ;N). If p ∈
Sα(M), we define `(p) := α and dom(p) := M . Note that α is an
invariant of the Galois type and is referred to as its length.

Say p = tp(ā/M ;N) ∈ Sα(M), where ā = 〈ai : i < α〉. For X ⊆ α and
M0 ≺ M , write pX � M0 for tp(āX/M0;N), where āX := 〈ai : i ∈ X〉.
We say p ∈ Sα,na(M) if ai /∈ M for all i < α, and similarly define
S<α,na(M) (it is easy to check these definitions do not depend on the
choice of ā and N).

We briefly review the notion of tameness. Although it appears implic-
itly (for saturated models) in Shelah [She99], tameness as a property of
AECs was first introduced in Grossberg and VanDieren [GV06b] and
used to prove a stability spectrum theorem there.

6The definitions that follow make sense for an arbitrary set of cardinals F , but
the proofs of most of the facts below require that F is an interval.
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Definition 2.2 (Tameness). Let θ > λ ≥ LS(K) and let G ⊆
⋃
M∈K S

<∞(M)
be a family of types. We say that K is (λ, θ)-tame for G if for any
M ∈ K≤θ and any p, q ∈ G ∩ S<∞(M), if p 6= q, then there exists
M0 ≺ M of size ≤ λ such that p � M0 6= q � M0. We define similarly
(λ,< θ)-tame, (< λ, θ)-tame, etc. When θ = ∞, we omit it. (λ, θ)-
tame for α-types means (λ, θ)-tame for

⋃
M∈K S

α(M), and similarly for
< α-types. When α = 1, we omit it and simply say (λ, θ)-tame.

We also recall that we can define a notion of stability:

Definition 2.3 (Stability). Let λ ≥ LS(K) and α be cardinals. We
say that K is α-stable in λ if for any M ∈ Kλ, |Sα(M)| ≤ λ.

We say that K is stable in λ if it is 1-stable in λ.

We say that K is α-stable if it is α-stable in λ for some λ ≥ LS(K).
We say that K is stable if it is 1-stable in λ for some λ ≥ LS(K). We
write “unstable” instead of “not stable”.

We define similarly stability for KF , e.g. KF is stable if and only if K
is stable in λ for some λ ∈ F .

Remark 2.4. If α < β, and K is β-stable in λ, then K is α-stable in
λ.

The following follows from [Bon, Theorem 3.1].

Fact 2.5. Let λ ≥ LS(K). Let α be a cardinal. Assume K is stable in
λ and λα = λ. Then K is α-stable in λ.

2.3. Commutative Diagrams. Since a picture is worth a thousand
words, we make extensive use of commutative diagrams to illustrate
the proofs. Most of the notation is standard. When we write

M0
[a]

f // M1
[b̄]

g // M2

The functions f and g, typically written above arrows, are always K-
embeddings; that is, f : M0

∼= f [M0] ≺ M1. Writing no functions
means that the K-embedding is the identity. The elements in square
brackets a and b̄, typically written below arrows, are elements that exist
in the target model, but not the source model; that is, a ∈M1−f [M0].
Writing no element simply means that there are no elements that we
wish to draw the reader’s attention to in the difference. In particular,
it does not mean that the two models are isomorphic. We sometimes
make a distinction between embeddings appearing in the hypothesis
of a statement (denoted by solid lines), and those appearing in the
conclusion (denoted by dotted lines).
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3. Good frames

Good frames were first defined in [She09, Chapter II]. The idea is to
provide a localized (i.e. only for base models of a given size λ) axiomati-
zation of a forking-like notion for a “nice enough” set of 1-types. These
axioms are similar to the properties of first-order forking in a super-
stable theory. Jarden and Shelah (in [JS13]) later gave a slightly more
general definition, not assuming the existence of a superlimit model
and dropping some of the redundant clauses. We give a slightly more
general variation here: following [Vas16b], we assume the models come
from KF , for F an interval, instead of just Kλ. We also assume that
the types could be longer than just types of singletons. We first adapt
the definition of a pre-λ-frame from [She09, Definition III.0.2.1]:

Definition 3.1 (Pre-frame). Let α be an ordinal and let F be an
interval of the form [λ, θ), where λ is a cardinal, and θ > λ is either a
cardinal or ∞.

A pre-(< α,F)-frame is a triple s = (K,^,Sbs), where:

(1) K is an abstract elementary class with λ ≥ LS(K), Kλ 6= ∅.
(2) Sbs ⊆

⋃
M∈KF S

<α,na(M). For M ∈ KF and β an ordinal, we

write Sβ,bs(M) for Sbs ∩ Sβ,na(M) and similarly for S<β,bs(M).
(3) ^ is a relation on quadruples of the form (M0,M1, ā, N), where

M0 ≺ M1 ≺ N , ā ∈ <αN , and M0, M1, N are all in KF . We

write ^(M0,M1, ā, N) or ā
N

^
M0

M1 instead of (M0,M1, a,N) ∈

^.
(4) The following properties hold:

(a) Invariance: If f : N ∼= N ′ and ā
N

^
M0

M1, then f(ā)
N ′

^
f [M0]

f [M1].

If tp(ā/M1;N) ∈ Sbs(M1), then tp(f(ā)/f [M1];N ′) ∈ Sbs(f [M1]).

(b) Monotonicity: If ā
N

^
M0

M1, ā′ is a subsequence of ā, M0 ≺

M ′
0 ≺ M ′

1 ≺ M1 ≺ N ′ ≺ N ≺ N ′′ with ā′ ∈ N ′, and N ′′ ∈

KF , then ā′
N ′

^
M ′0

M ′
1 and ā′

N ′′

^
M ′0

M ′
1. If tp(ā/M1;N) ∈ Sbs(M1)

and ā′ is a subsequence of ā, then tp(ā′/M1;N) ∈ Sbs(M1).

(c) Nonforking types are basic: If ā
N

^
M
M , then tp(ā/M ;N) ∈

Sbs(M).
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A pre-(≤ α,F)-frame is a pre-(< (α + 1),F)-frame. When α = 1, we
drop it. We write pre-(< α, λ)-frame instead of pre-(< α, {λ})-frame
or pre-(< α, [λ, λ+))-frame; and pre-(< α, (≥ λ))-frame instead of pre-
(< α, [λ,∞))-frame. We sometimes drop the (< α,F) when it is clear
from context.

For s a pre-(< α,F)-frame, β ≤ α, and F ′ ⊆ F an interval, we let s<βF ′
denote the pre-(< β,F ′)-frame defined in the obvious way by restricting
the basic types and ^ to models in KF ′ and elements of length < β.
If F ′ = F or β = α, we omit it. For λ′ ∈ F , we write s<βλ′ instead of

s<β{λ′}.

Remark 3.2. Note that, following Shelah’s original definition, we have
defined nonforking (in the sense of frames) only for nonalgebraic types.
However, this restriction is inessential: We could expand the definition
of nonforking to algebraic types by saying that an algebraic p ∈ S(M)
does not fork over M0 if and only if p � M0 is algebraic. This change
would not affect whether or not a frame satisfies the properties given7.

Remark 3.3. The reader might wonder about the reasons for having a
special class of basic types. Following Shelah [She09, Definition III.9.2],
let us call a pre-frame type-full if the basic types are all the nonalgebraic
types. It can be shown [She09, III.9.6] that any weakly successful good
frame can be extended to a type-full one. Furthermore, there are no
known examples of a good λ-frame which which cannot be extended
to a type-full one. However Shelah’s initial construction [She09, II.3]
builds a non type-full good frame and it is not clear that it can be
extended to a type-full one until after Shelah shows that the frame is
weakly successful. Thus it can be easier to build a good frame than to
build a type-full one, and most results about frame already hold in the
non-type-full context. In this paper, we will set the basic types to be
the independent sequences, hence getting another natural example of
a non type-full good frame.

Notation 3.4. If s = (K,^,Sbs) is a pre-(< α,F)-frame, then αs :=
α, Fs := F , Ks := K, ^

s
:= ^, and Sbs

s := Sbs. If F = [λ, θ), then let

λs := λ, θs := θ.

By the invariance and monotonicity properties, ^ is really a relation
on types. This justifies the next definition.

7In the statement of the extension property, we would need to require that the
nonforking extension of a nonalgebraic type is nonalgebraic.
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Definition 3.5. If s = (K,^,Sbs) is a pre-(< α,F)-frame, p ∈

S<α(M1) is a type, we say p does not fork over M0 if ā
N

^
M0

M1 for some

(equivalently any) ā and N such that p = tp(ā/M1;N). If s is not clear
from context, we add “with respect to s”.

Remark 3.6. We could have started from (K,^) and defined the
basic types as those that do not fork over their own domain. Since we
are sometimes interested in studying frames that only satisfy existence
over a certain class of models (like the saturated models), we will not
adopt this approach.

Remark 3.7. We could also have specified only KF or even only Kλ

instead of the full AEC K. This is completely equivalent since, by
[She09, Section II.2], Kλ fully determines K.

Definition 3.8 (Good frame). Let α, F be as above.

A good (< α,F)-frame is a pre-(< α,F)-frame (K,^,Sbs) satisfying
in addition:

(1) KF has amalgamation, joint embedding, and no maximal mod-
els.

(2) bs-Stability: |S1,bs(M)| ≤ ‖M‖ for all M ∈ KF .
(3) Density of basic types: If M � N are in KF , then there is

a ∈ N such that tp(a/M ;N) ∈ Sbs(M).
(4) Existence of nonforking extension: If p ∈ Sbs(M), N � M is

in KF , and β < α is such that `(p) ≤ β, then there is some
q ∈ Sβ,bs(N) that does not fork over M and extends p, i.e.
qβ �M = p.

(5) Uniqueness: If p, q ∈ S<α(N) do not fork over M and p �M =
q �M , then p = q.

(6) Symmetry: If ā1

N

^
M0

M2, ā2 ∈ <αM2, and tp(ā2/M0;N) ∈ Sbs(M0),

then there is M1 containing ā1 and N ′ � N such that ā2

N ′

^
M0

M1.

(7) Local character: If δ is a regular cardinal, 〈Mi ∈ KF : i ≤ δ〉 is
increasing continuous, and p ∈ Sbs(Mδ) is such that `(p) < δ,
then there exists i < δ such that p does not fork over Mi.

(8) Continuity: If δ is a limit ordinal, 〈Mi ∈ KF : i ≤ δ〉 and 〈αi <
α : i ≤ δ〉 are increasing and continuous, and pi ∈ Sαi,bs(Mi) for
i < δ are such that j < i < δ implies pj = p

αj
i � Mj, then there

is some p ∈ Sαδ,bs(Mδ) such that for all i < δ, pi = pαi � Mi.
Moreover, if each pi does not fork over M0, then neither does p.



TAMENESS AND FRAMES REVISITED 11

(9) Transitivity: If M0 ≺ M1 ≺ M2, p ∈ S(M2) does not fork over
M1 and p �M1 does not fork over M0, then p does not fork over
M0.

We will sometimes refer to “existence of nonforking extension” as sim-
ply “existence”.

For L a list of properties8, a good−L (< α,F)-frame is a pre-(< α,F)-
frame that satisfies all the properties of good frames except possibly
the ones in L. In this paper, L will only contain symmetry and/or bs-
stability. We abbreviate symmetry by S, bs-stability by St, and write
good− for good−(S,St).

We say that K has a good (< α,F)-frame if there is a good (< α,F)-
frame where K is the underlying AEC (and similarly for good−).

Remark 3.9. Transitivity follows directly from existence and unique-
ness by [She09, Claim II.2.18].

Remark 3.10. The obvious monotonicity properties hold: If s is a
good (< α,F)-frame, β ≤ α, and F ′ is a subinterval of F , then s<βF ′ is
a good (< β,F ′) frame (and similarly for good−).

Remark 3.11. If T is a superstable first-order theory, then forking
induces a good (≥ |T |)-frame on the class of models of T ordered by
elementary submodel. In the non-elementary context, Shelah showed
in [She09, Theorem II.3.7] how to build a good frame from local cate-
goricity hypotheses and GCH-like assumptions, while the second author
[Vas16b] showed how to build a good frame in ZFC from categoricity,
tameness, and a monster model. Note that a family of examples due
to Hart and Shelah [HS90] demonstrates that, in the absence of tame-
ness, an AEC could have a good λ-frame but no good (≥ λ)-frame (see
[Bon14a, Section 10] for a detailed writeup).

Note that for types of finite length, local character implies that non-
forking is witnessed by a model of small size:

Proposition 3.12. Let α ≤ ω. Assume s = (K,^,Sbs) is a pre-
(< α,F)-frame satisfying local character and transitivity. If M ∈ KF
and p ∈ Sbs(M), then there exists M ′ ∈ Kλ such that p does not fork
over M ′.

Proof. Same proof as [Vas16b, Proposition 2.23] (there α = 1 but this
does not change the proof). �

8This notation was already used in [Vas16b, Definition 2.21].
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We conclude this section with an easy variation on the existence prop-
erty that will be used later.

Lemma 3.13. Assume s = (K,^,Sbs) is a pre-(< α,F)-frame with
amalgamation, existence, and transitivity. Suppose M ≺M0 ≺M1 are
in KF and f : M0 →M2 is given with M2 ∈ KF . Assume also that we

have ā ∈M1 such that ā
M1

^
M
M0.

There is N �M2 and g : M1 → N extending f such that g(ā)
N

^
g[M ]

M2.

A diagram is below.

M1 g
// N

M0

[ā]

OO

f
// M2

OO

M

=={{{{{{{

Proof. Extend f to an L(K)-isomorphism f̂ with range M2. By ex-

istence, there is some q ∈ Sbs(f̂−1[M2]) that extends tp(ā/M0;M1)

and does not fork over M0. Realize q as tp(b̄/f̂−1[M2];N+). Since
tp(ā/M0;M1) = tp(b̄/M0;N+), there is N++ � N+ and h : M1 −−→

M0

N++ such that h(ā) = b̄. Then, since N++ extends f̂−1[M2], we can

find an L(K)-isomorphism f̂+ that extends f̂ such that N++ is the

domain of f̂+. Set N := f̂+[N++] and g := f̂+ ◦ h. Some nonforking
calculus shows that this works. �

4. Independent sequences form a good− frame

In this section, we show how to make a good−S F -frame longer (i.e.
extend the nonforking relation to longer sequences). This is done by
using independent sequences, introduced by Shelah [She09, Definition
III.5.2] and also studied by Jarden and Sitton [JS12], to define basic
types and nonforking. Preservation of the symmetry property will be
studied in Section 5, and in Section 6 we will review how to make the
frame larger (i.e. extend the nonforking relation to larger models).
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Note that Shelah already claims many of the results of this section (for
finite tuples) in [She09, Exercise III.9.4.1] but the proofs have never
appeared anywhere.

Definition 4.1 (Independent sequence). Let α be an ordinal and let
s be a pre-F -frame.

(1) 〈ai : i < α〉, 〈Mi : i ≤ α〉 is said to be independent in (M,M ′, N)
when:
(a) (Mi)i≤α is increasing continuous in KF .
(b) M ≺M ′ ≺M0 and M,M ′ ∈ KF .
(c) Mα ≺ N is in KF .

(d) For every i < α , ai
Mi+1

^
M

Mi.

〈ai : i < α〉, 〈Mi : i ≤ α〉 is said to be independent over M
when it is independent in (M,M0,Mα).

(2) ā := 〈ai : i < α〉 is said to be independent in (M,M ′, N) when
for some 〈Mi : i ≤ α〉 we have that 〈ai : i < α〉, 〈Mi : i ≤ α〉 is
independent in (M,M ′, N).

(3) We say that 〈ai : i < α〉, 〈Mi : i ≤ α〉 is independent from M ′

over M in N if it is independent in (M,M ′, N). We similarly
define ā is independent from M ′ over M in N . When N is clear
from context, we drop it.

Remark 4.2. If α = 1, then ā := 〈a0〉 is independent from M ′ over M
in N if and only if tp(a0/M

′;N) does not fork over M .

This motivates the next definition:

Definition 4.3. Let s := (K,^,Sbs) be a pre-F -frame, where F =

[λ, θ). Let α ≤ θ. Define s<α := (K,
<α

^,S<α,bs) as follows:

• For M0 ≺ M1 ≺ N in KF and ā := (ai)i<β in N with β < α,
<α

^(M0,M1, ā, N) if and only if ā is independent from M1 over
M0 in N .
• For M ∈ KF and p ∈ S<α(M), p ∈ S<α,bs(M) if and only if

there exists N � M and ā ∈ N such that p = tp(ā/M ;N) and
<α

^(M,M, ā,N).

Lemma 4.4 (Invariance). Let s := (K,^,Sbs) be a pre-F -frame,
where F = [λ, θ). Let α ≤ θ. Assume KF has amalgamation. Given
ā = 〈ai : i < α〉 independent from M0 over M in M1 and M2 � M0

containing b̄ such that tp(ā/M0;M1) = tp(b̄/M0;M2), we have that b̄
is independent from M0 over M in M2.
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Proof. Straightforward.

�

Remark 4.5. When dealing with types rather than sequences, the
N+ in the definition can be avoided. That is, given p ∈ Sβ,bs(N) that
does not fork over M , there is some 〈ai : i < β〉, 〈N i : i ≤ β〉 such
that p = tp(〈ai : i < β〉/N ;Nβ) that witnesses that 〈ai : i < β〉 is
independent from N over M in Nβ.

Lemma 4.6. Let s := (K,^,Sbs) be a pre-F -frame, where F = [λ, θ).
Let α ≤ θ. If KF has amalgamation, then s<α is a pre-(< α,F)-frame.

Proof. Invariance is Lemma 4.4. For monotonicity, one can also use
invariance to see that if ā is independent from M1 over M0 in N and
N ′ � N , then ā is independent from M1 over M0 in N ′. The rest is
straightforward. �

The next result shows that local character and existence are preserved
when elongating a frame:

Theorem 4.7. Assume s := (K,^,Sbs) is a good− F -frame, where
F = [λ, θ). Then:

(1) s<θ has local character. Moreover, if p ∈ Sα,bs(N) with α < θ,
then there exists M ≺ N in K≤λ+|α| such that p does not fork
over M .

(2) s<θ has existence.

Proof.

(1) Assume p ∈ Sα,bs(N) and N =
⋃
i<δNi with α < δ < θ, δ a

regular cardinal. Then, there is some ā = 〈ai : i < α〉 and
increasing, continuous 〈N i : i ≤ α〉 such that α < δ, p =

tp(ā/N ;Nα), and, for all i < α, ai
N i+1

^
N

N i. By Monotonicity for

s, tp(ai/N ;N i+1) ∈ Sbs(N). By Local Character for s, for all

i < α there is some ji < δ such that ai
N i+1

^
Nji

N . By Transitivity

for s, ai
N i+1

^
Nji

N i. Set j∗ := supi<α ji; since δ = cf(δ) > α, we

have that j∗ < α. By Monotonicity for s, ai
N i+1

^
Nj∗

N i for all i < α.

This is exactly what we need to conclude that ā is independent
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from N over Nj∗ in Nα. Thus p = tp(ā/N ;Nα) does not fork
over Nj∗ .

The moreover part is proved similarly: By Proposition 3.12,

for each i < α there exists M i ≺ N in Kλ such that N
Nα

^
M i

ai. By

Transitivity, N i
Nα

^
M i

ai. Now by the Löwenheim-Skolem axiom,

there exists M ≺ N in K≤λ+|α| such that
⋃
i<αM

i ≺ M . By

Monotonicity, N i
Nα

^
M
ai, so ā is independent from N over M in

Nα, so p does not fork over M , as needed.
(2) We prove two extension results separately: extending the do-

main and extending the length. Combining these two results
shows that s<θ has existence.

For extending the domain, let p ∈ S<θ,bs(M) and N � M .
By definition of this frame, there is some ā = 〈ai : i < β〉

and increasing, continuous 〈M i : i ≤ β〉 such that ai
M i+1

^
M

M i

for all i < β. We wish to construct increasing and continuous
〈N i : i ≤ β〉 and 〈fi : M i → N i : i ≤ β〉 such that
(a) f0 �M = id; and

(b) fi(ai)
N i+1

^
M

N i.

This is done by induction by taking unions at limits and by
using Lemma 3.13 at all successor steps. Since β < θ, N i

is in KF at all steps and the induction can continue. Then
tp(ā/M ;Mβ) = tp(f(ā)/M ;Nβ) as witnessed by f and f(ā) is
independent in (M,N,Nβ). Thus, q = tp(f(ā)/N,Nβ) is as
desired.

N // N i // N i+1 // Nβ

M

OO

// M i //

fi

OO

M i+1 //

fi+1

OO

Mβ

fβ

OO

To extend the length, suppose that β < α < θ and p ∈
Sβ,bs(N) does not fork over M . This means that there is 〈ai :
i < β〉, 〈N i : i ≤ β〉 independent in (M,N,Nβ) such that
p = tp(〈ai : i < β〉/N ;Nβ). We will extend this sequence to
be of length α by induction. At limit steps, simply taking the
union of the extensions works. If we have β ≤ γ < α and have
already extended to γ (i.e., 〈ai : i < γ〉, 〈N i : i ≤ γ〉 is defined),
then let r ∈ Sbs(M) be arbitrary (use no maximal models and
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density of basic types). Let r+ ∈ Sbs(Nγ) be its nonforking
extension. Thus, there is aγ ∈ Nγ+1 that realizes r+ such that

aγ
Nγ+1

^
M

Nγ. Then 〈ai : i < γ+1〉, 〈N i : i ≤ γ+1〉 is independent

from N over M in Nγ+1, as desired.

�

The next technical lemma is key in showing that uniqueness and con-
tinuity are preserved when making a frame longer. This allows us to
put together two independent sequences into one.

Lemma 4.8 (Amalgamation of independent sequences). Let s be a
good− F -frame, and β < θs. Suppose that p, q ∈ Sβ,bs(N) do not fork
over M , that p � M = q � M , and that there are witnessing sequences
ā` = 〈ai` : i < β〉, 〈N i

` : i ≤ β〉 independent from N over M in Nβ
` for

` = 0, 1 with ā0 � p and ā1 � q. Then, there are coherent, continuous,
increasing (Ni, fj,i)j<i≤β and gi` : N i

` → Ni such that, for all j < i < β,

N j
1

gj1   

// N i
1

gi1 ��

// Nβ
1

gβ1   
M // N

??��������

��?
??

??
??

? Nj
fj,i

// Ni
fi,β

// Nβ

N j
0

gj0

>>

// N i
0

gi0

??

// Nβ
0

gβ0

>>

commutes, gi+1
0 (ai0) = gi+1

1 (ai1), and9 gi+1
0 (ai0)

Ni+1

^
gi+1
0 [M ]

fi,i+1[Ni].

Proof. We will build:

(1) models {Ni,M
i
` : i ≤ β, ` = 0, 1};

(2) embeddings {hi` : N i
` → M i

` , r
i
` : M i

` → Ni : i ≤ β, ` = 0, 1};
and

(3) coherent embeddings {fj,i : Nj → Ni, r̂
j,i
` : M j

` → M i
` : i ≤

β, ` = 0, 1}

such that, for i < β:

9Note that gi0[M ] = gi1[M ] by commutativity of the diagram.
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(1)

M i+1
0

ri+1
0

// Ni+1

Ni

OO

// M i+1
1

ri+1
1

OO

commutes;
(2)

N i+1
`

hi+1
`

// M i+1
`

N i
`

OO

hi`

// M i
`

ri`

// Ni

OO

commutes;
(3) M0

` = N0, r0
` = idN0 for ` = 0, 1, and

N0
0

h00

// N0

N

OO

// N0
1

h01

OO

commutes;

(4) hi+1
` (ai`)

M i+1
`

^
hi+1
` [N i

` ]

Ni;

(5) ri+1
0 ◦ hi+1

0 (ai0) = ri+1
1 ◦ hi+1

1 (ai1); and
(6) (Ni, fj,i)j<i≤β and (M i

` , r̂
j,i
` )j<i≤β are continuous, coherent sys-

tems generated by r̂i,i+1
` = ri` and fi,i+1 = ri0 � Ni = ri1 � Ni.
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Once these objects have been constructed we will have the following
commutative diagram for j < i ≤ β:

Ni

M i
0

ri0

>>||||||||
M i

1

ri1
``BBBBBBBB

N i
0

hi0

>>}}}}}}}}
Nj

fj,i

OO

>>}}}}}}}}

``AAAAAAAA

N i
1

hi1
``AAAAAAAA

M j
0

r̂j,i0

OO

rj0

>>~~~~~~~

M j
1

r̂j,i1

OO

rj1
``@@@@@@@

N j
0

OO

hj0

>>~~~~~~~~
N j

1

hj1
``@@@@@@@@

OO

We can then take gi` := ri` ◦ hi`. This gives the desired diagram by
removing the M i

` ’s. The function equality is given by (5) and the
nonforking is given by applying fi,i+1 to (4).

The construction proceeds by induction. At stage i, we will construct
hi`, r

i
`,M

i
` , and Ni for ` = 0, 1. Also, at each stage, we implicitly extend

the coherent system by the rule given in (6) above (at successor steps)
or by taking direct limits (at limit steps).
i = 0: Amalgamate N0

0 , N
0
1 over N to get N0. Also set M0

` := N0 and
r0
` := idN0 for ` = 0, 1.
i limit: Take direct limits and use continuity to see everything is pre-
served.
i = j + 1: Use Lemma 3.13 –replace (M,M0,M1, ā, f,M2) there with

(M,N j
` , N

j+1
` , aj`, r

j
` ◦ h

j
`, Nj) here–to get (hj+1

` ,M j+1
` ) here, written as

(g,N) there; this gives (4):

hj+1
` (aj`)

Mj+1
`

^
hj+1
` [M ]

Nj

By the commutative diagrams, hj+1
0 � M = hj+1

1 � M , so, since aj0 and
aj1 have the same type over M , we have that:

tp(hj+1
0 (aj0)/hj+1

0 [M ];M j+1
0 ) = tp(hj+1

1 (aj1)/hj+1
1 [M ];M j+1

1 )

By Uniqueness for s, these imply that:

tp(hj+1
0 (aj0)/Nj;M

j+1
0 ) = tp(hj+1

1 (aj1)/Nj;M
j+1
1 )
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We can witness this with rj+1
` : M j+1

` → Nj+1 for ` = 0, 1; that is,

rj+1
0 � Nj = rj+1

1 � Nj and rj+1
0 ◦ hj+1

0 (aj0) = rj+1
1 ◦ hj+1

1 (aj1). �

Corollary 4.9. Let s = (K,^,Sbs) be a good− F -frame. Suppose
M0 ≺ M ≺ N are in KF and α ≤ β < θs are such that there are
p ∈ Sα,bs(M) and q ∈ Sβ,bs(N) such that qα � M = p and p, q do not
fork over M0. If āp = 〈aip : i < α〉, 〈N i

p : i ≤ α〉 is independent from

M over M0 in Nα
p such that āp � p and āq = 〈aiq : i < β〉, 〈N i

q : i ≤ β〉
is independent from N over M0 in Nβ

q such that āq � q, then there is

〈M i
q : i ≤ β〉 and hi : N i

p →M i
q for i ≤ α such that:

(1) āq, 〈M i
q : i ≤ β〉 is independent from N over M0 in Mβ

q ;

(2) N i
q ≺M i

q for all i ≤ β; and

(3) hi+1(aip) = aiq and idM ⊆ hi ⊆ hi+1.

Proof. First, extend the p-sequence to 〈aip : i < β〉, 〈N i
p : i ≤ β〉

independent from M over M0 in Nβ
p (use that s<θs has existence). We

can then amalgamate these sequences over M using Lemma 4.8: there
is (Ni, fj,i)j<i≤β and gix : N i

x → Ni for x = p, q and i ≤ β as above.
Since we have gβq : Nβ

q
∼= gβq [Nβ

q ] ≺ Nβ, we can extend gβq to an L(K)-

isomorphism h with Nβ in its range. Set M i
q := h−1[Ni] for i ≤ β. Note

that hi := h−1 ◦ giq : N i
q →M i

q is the identity. �

Corollary 4.10. Assume s := (K,^,Sbs) is a good− F -frame, where
F = [λ, θ). Then:

(1) s<θ has uniqueness.
(2) s<θ has continuity.

Proof.

(1) This follows directly from Lemma 4.8.
(2) We prove the moreover clause in the definition of continuity.

For the main clause, the M0’s appearing in this proof can be
replaced by Mi or Mδ as appropriate.

For all i < δ, there is some āi = 〈aki : k < αi〉, 〈Nk
i :

k ≤ αi〉 independent from Mi over M0 in Nαi
i such that pi =

tp(āi/Mi;N
αi
i ).

We will construct 〈Mk
i : i < δ, k ≤ αi〉 and {fkj,i : Mk

j →Mk
i :

k ≤ αj, j < i < αδ} such that
(a) Nk

i ≺ Mk
i and āi, 〈Mk

i : k < αi〉 is independent from Mi

over M0 in Mαi
i ;
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(b) for each k ≤ αj, (Mk
i , f

k
l,i)j≤l≤i<αδ is a coherent, direct

system such that

Mi2
// Mk0

i2
// Mk1

i2

Mi1
//

OO

Mk0
i1

//

f
k0
i1,i2

OO

Mk1
i1

f
k1
i1,i2

OO

Mi0
//

OO

Mk0
i0

//

f
k0
i0,i1

OO

Mk1
i0

f
k1
i0,i1

OO
f
k1
i0,i2

UU

commutes; and
(c) fkj,i(a

k
j ) = aki .

This is possible: just apply Corollary 4.9 at successors and
take direct limits at limits.

This is enough. For each k < αδ, set (Mk
δ , f

k
i,δ)i<δ,k≤αi =

lim−→(Mk
i , f

k
j,i). Then 〈Mk

δ : k < αδ〉 is increasing and continuous

because each 〈Mk
i : k < αi〉 is. Set Mαδ

δ := ∪k<αδMk
δ . For

k < αi, αj, we have that fk+1
i,δ (aki ) = fk+1

j,δ (akj ). Thus, there is

no confusion in setting akδ = fk+1
i,δ (aki ) for some/any k < αi. Set

p = tp(āδ/Mδ,M
αδ
δ ).

Note that Mδ ≺ M0
δ ; indeed fki,δ � Mi is the identity for all

k ≤ αi. Thus, we have that

pi = tp(āi/Mi;M
αi
i ) = tp(〈akδ : k < αi〉/Mi;M

αδ
δ ) = pαi �Mi

Claim: For all k < αδ, a
k
δ

Mk+1
δ

^
M0

Mk
δ .

Proof of Claim: Given i < δ and k < αi, we have by

construction that aki
Mk+1
i

^
M0

Mk
i . Applying fki,δ to this, we get

akδ

fk+1
i,δ (Mk+1

i )

^
M0

fki,δ(M
k
i ). By construction,

Mk
δ =

⋃
i<δ

fki,δ(M
k
i ) and Mk+1

δ =
⋃
i<δ

fk+1
i,δ (Mk+1

i )

Thus, by Continuity for s, we have, for all i < δ, akδ

Mk+1
δ

^
M0

Mk
δ .

Thus, āδ, 〈Mk
δ : k ≤ αδ〉 is independent from Mδ over M0 in

Mαδ
δ . So p ∈ Sαδ,bs(Mδ) and extends each pi as desired.

�
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Remark 4.11. Note that a special case (when F = [λ, λ+]) of the con-
tinuity property above is Jarden’s λ+-continuity of serial independence
(see [Jar16, Definition 5.3]). This allows Jarden’s proof that symmetry
transfers up ([Jar16, Theorem 5.4]) to go through without any extra
hypotheses. Another corollary of continuity is what Jarden and Sitton
call the finite continuity property (see [JS12, Definition 8.2]). This is
discussed in detail in Section 5.1.

Putting everything together, we obtain that all the property of a good−

frame transfer to the elongation; recall that good− frames are good
frames except they might fail stability and/or symmetry. We will later
see that symmetry transfers to finite sequences and give conditions
under which it transfers to all sequences.

Corollary 4.12. Assume s is a good− F -frame. Then s<θs is a good−

(< θs,F)-frame.

Proof. Set θ := θs. s<θs is a pre-(< θ,F)-frame by Lemma 4.6. Amal-
gamation, joint-embedding, no maximal models, and density of basic
types hold since they hold in s. Existence and local character hold
by Theorem 4.7, uniqueness and continuity hold by Corollary 4.10.
Finally, transitivity follows from Remark 3.9. �

Note that bs-stability only mentions basic 1-types, so it transfers im-
mediately. Thus, the only property left is symmetry, which is discussed
in the next two sections.

We conclude by proving a concatenation lemma for independent se-
quences. This is already proved for good frames in [JS12, Proposition
4.1], but the proof relies on [JS12, Proposition 2.6], which is proved as
[JS13, Proposition 3.1.8] and uses symmetry in an essential way. Here,
we improve this to just requiring that s is a pre-frame that also satisfies
amalgamation, existence, continuity, and transitivity. In particular, we
avoid any use of symmetry or nonforking amalgamation. This shows
that the situation is somewhat similar to the first-order context, where
concatenation holds in any theory (see, e.g., [GIL02, Lemma 1.6]).

Theorem 4.13 (Concatenation). Assume s is a pre-F -frame with
amalgamation, existence, transitivity, and continuity. Let M ≺ M0 ≺
M1 ≺ M2 be such that ā = 〈ai : i < α〉 is independent from M0 over
M in M1 and b̄ = 〈bi : i < β〉 is independent from M1 over M in M2.
Then āb̄ is independent from M0 over M in M2.

Proof. From the independence of ā from M0 over M in M1, there is a
continuous, increasing 〈M i

0 : i ≤ α〉 and N+
0 such that
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• M0 ≺M i
0 ≺ N+

0 ;
• M1 ≺ N+

0 ; and

• ai
M i+1

0

^
M

M i
0.

From the independence of b̄ from M1 over M in M2, there is a contin-
uous, increasing 〈M i

1 : i ≤ β〉 and N+
1 such that

• M1 ≺M i
1 ≺ N+

1 ;
• M2 ≺ N+

1 ; and

• bi
M i+1

1

^
M

M i
1.

Define increasing and continuous 〈N i
1 : i ≤ β〉 and 〈gi : M i

1 → Ni : i ≤
β〉 such that:

• N+
0 ≺ N0

1 and g0 �M1 = idM1 ; and

• For all i < β, gi+1(bi)
N i+1

1

^
M

N i
1.

This can easily be constructed by inductions: amalgamate M0
1 and N+

0

over M1 to get N0
1 and g0. At successor steps, apply Lemma 3.13 and

take unions at limit stages.

After this construction, amalgamate N+
1 and Nβ

1 over Mβ
1 to get N++

and g so the following diagram commutes for j < β:

N+
0

// N0
1

// N j
1

// N j+1
1

// N++

M0
0

// Mα
0

>>||||||||
M0

1

g0

OO

// M j
1

gj

OO

// M j+1
1

gj+1

OO

// N+
1

g

OO

M // M0

OO

// M1

OO

=={{{{{{{{
// M2

OO

Define the sequence 〈N i : i ≤ α + β〉 by

N i :=

{
M i

0 if i < α

N j
1 if i = α + j ∈ [α, β]

Claim: This sequences witnesses that c̄ := ā_g(b̄) is independent from
M0 over M in N++.
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Proof of Claim: It is easy to see that this sequence is of the proper
type, i.e. it is increasing and continuous and M0 ≺ N i ≺ N++ for all
i ≤ α + β.

If i < α, then we need to show that ci
N i+1

^
M

N i, which is the same as

ai
M i+1

0

^
M

M i
0. This just follows from independence of ā.

If i = α+j ≥ α, then we need to show that ci
N i+1

^
M

N i, which is the same

as gj+1(bj)
Nj+1

1

^
M

N j
1 . This holds directly by the construction. †Claim

Notice that the map g shows that tp(āg(b̄)/M0;Nβ
1 ) = tp(āb̄/M0;M2).

Thus, by Invariance (Lemma 4.4), we have that āb̄ is independent from
M0 over M In M2. �

5. Symmetry in long frames

In this section, we discuss when symmetry transfers from a good frame
to its elongation. We do so by studying the following unordered version
of independence:

Definition 5.1. A set I is said to be independent in (M,M0, N) if
some enumeration of I is independent in (M,M0, N). As usual, we say
instead that I is independent from M0 over M in N .

5.1. Several versions of continuity. The notion of a set being in-
dependent gives rise to several notions of continuity. We gave a def-
inition of continuity for a pre-frame s, as well as continuity for the
corresponding frame of independent sequences s<θs (what Jarden calls
the continuity of serial independence [Jar16, Definition 5.3], see Re-
mark 4.11). We can now study the corresponding continuity properties
for sets rather than sequences: for s a pre-F -frame, let us say that
s<θs has the unordered continuity property if for every increasing chain
〈Mα : α < δ〉 every N containing

⋃
α<δMα and every I ⊆ |N |, I is

independent from
⋃
α<δMα over M0 if I is independent from Mα over

M0 for all α < δ (so the enumeration witnessing the independence is
allowed to change each time). Confusingly, Jarden and Sitton [JS12,
Definition 5.5] call this the continuity property.

Another notion of continuity was also introduced by Jarden and Sitton.
Let us say that a set I is finitely independent (from M0 over M in N) if
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every finite subset of I is. Jarden and Sitton [JS12, Definition 8.2] say
that the finite continuity property holds when unordered continuity
holds for the notion of finite independence. We will refer to this as
unordered finite continuity.

Jarden and Sitton show [JS12, Proposition 8.4] that unordered finite
continuity holds in good−St frames which satisfy the additional assump-
tion of the conjugation property and being weakly successful. Using
the (ordered) continuity property for independent sequences (Corollary
4.10), together with Fact 5.2 below, we immediately obtain that the
unordered finite continuity holds in any good−St frame.

Fact 5.2 (Theorem 4.2.(a) in [JS12]). Let s be a good−St F -frame.
If ā is a finite tuple independent from M ′ over M in N , then any
permutation of ā is independent from M ′ over M in N .

Implicit in this notion is a notion of independence being finitely wit-
nessed [JS12, Definition 3.4] which says that a set I is independent if
and only if all its finite subsets are. We give a more general parametrized
definition here:

Definition 5.3. Let s be a pre-F -frame and µ ≤ θs be a cardinal. We
say that µ-independence in s is finitely witnessed if for any M0 ≺M ≺
N in KF and any I ⊆ N with |I| < µ, I is independent from M over
M0 in N if and only if all its finite subsets are independent from M
over M0 in N .

If µ = θs, we omit it.

Remark 5.4. In [JS12, Theorem 9.3] shows that independence is
finitely witnessed in a good λ-frame assuming the conjugation prop-
erty, categoricity in λ, and density of uniqueness triples. Earlier, Shelah
had proven the same result under stronger hypotheses [She09, Theorem
III.5.4].

Remark 5.5. It is straightforward to see that if independence is finitely
witnessed and the finite unordered continuity property holds, then the
unordered continuity property holds. Recall from the discussion above
that the finite unordered continuity property holds in any good−St-
frame.

Our next goal is to show that if s<µ has symmetry then µ-independence
is finitely witnessed (Theorem 5.9). Together with Lemma 5.11 deduc-
ing symmetry from the frame being sufficiently global, this will show
(Corollary 6.10) that tameness implies independence is finitely wit-
nessed.



TAMENESS AND FRAMES REVISITED 25

5.2. Symmetry implies being finitely witnessed. First we show
that symmetry is equivalent to showing that the order of enumeration
does not matter. The finite case is essentially Fact 5.2. To state the
infinite case precisely, we introduce new terminology:

Definition 5.6. Let s be a pre-F -frame and µ ≤ θs be a cardinal. We
say that s has µ-symmetry of independence if for any M0 ≺M ≺ N in
KF and any I ⊆ N with |I| < µ, I is independent from M over M0 in
N if and only if every enumeration of I is independent from M over
M0 in N .

If µ = θs, we omit it.

Thus a restatement of Fact 5.2 is that any good−St frame has ℵ0-
symmetry of independence. The next theorem says that µ-symmetry
of independence is equivalent to s<µ having symmetry.

Theorem 5.7. Let s be a good− F -frame and let µ ≤ θs be a cardinal.
The following are equivalent:

(1) s<µ has symmetry.
(2) For any M0 ≺ M ≺ N in KF and āb̄ ∈ N such that `(āb̄) < µ,

āb̄ is independent from M over M0 in N if and only if b̄ā is
independent in from M over M0 in N .

(3) s has µ-symmetry of independence.

Proof. We first show (1) is equivalent to (2). Assume s<µ has sym-
metry, and let M0 ≺ M ≺ N in KF and āb̄ ∈ N be such that
`(āb̄) < µ and āb̄ is independent from M over M0 in N . Then there ex-
ists 〈M i : i ≤ `(āb̄)〉 and N+ � N witnessing it. Say α := `(ā). Then
ā ∈ Mα, tp(ā/M ;Mα) ∈ Sα,bs(M0), and b̄ is independent from Mα

over M in N+, i.e. b̄
N+

^
M
Mα. By Symmetry, there must exist a model

M ′ containing b̄ and N++ � N+ such that ā
N++

^
M

M ′. By Monotonic-

ity, ā
N++

^
M0

M , so by Transitivity, ā
N++

^
M0

M ′. By Monotonicity, b̄
M ′

^
M0

M .

By concatenation (Theorem 4.13), b̄ā
N++

^
M0

M and so by Monotonicity,

b̄ā
N

^
M0

M , as needed. Conversely, assume (2). Assume ā1

N

^
M0

M2 with

ā1 ∈ <µN , and ā2 ∈ <µM2 is such that tp(ā2/M0;N) ∈ S<µ,bs(M0). By

existence, ā2

M2

^
M0

M0. By concatenation, ā1ā2

N

^
M0

M0. By (2), ā2ā1

N

^
M0

M0.



26 WILL BONEY AND SEBASTIEN VASEY

By definition of independent, there exists M1 containing ā1 and N ′ � N

such that ā2

N ′

^
M0

M1, as needed.

Next, we show that (2) is equivalent to (3). It is clear that (3) implies
(2), so we assume (2) and we prove (3) as follows: we prove the following
by induction on α < µ:

(∗)α Let M0 ≺ M ≺ N be in KF and let I ⊆ |N | have size less
than µ. If I is independent from M over M0 in N , then every
enumeration of I of order type α is independent from M over
M0 in N .

So let α < µ and assume (∗)β holds for all β < α. Suppose I as
above is independent from M over M0 in N and let 〈ai : i < α〉 be an
enumeration of I of type α.

First, suppose α is finite. Then I is finite so Fact 5.2 gives the result.

Second, suppose α = β + 1 is an infinite successor. Then 〈aβ〉_〈ai :
i < β〉 has order type β and so (by (∗)β) is independent from M over
M0 in N . Since (2) implies (1), the original sequence must also be
independent.

Finally, suppose that α is limit. By monotonicity, every subset of I
is independent from M over M0 in N . In particular, for each β < α
{ai : i < β} is independent from M over M0 in N , and so by (∗)β
〈ai : i < β〉 is also independent from M over M0 in N . Thus by
continuity (Corollary 4.10) 〈ai : i < α〉 is independent from M over M0

in N .

�

As a corollary, we manage to solve Exercise III.9.4.1 in [She09]:

Corollary 5.8. Let s be a good [good−St] F -frame. Then s<ω is a
good [good−St] F -frame.

Proof. By Corollary 4.12, s<ω is a good− F -frame. By Fact 5.2, s has
ℵ0-symmetry of independence. By Theorem 5.7, s<ω has symmetry, as
needed. Since bs-stability only refers to basic 1-types, s satisfies it if
and only if s<ω does. �

Unfortunately, we do not know whether in general ω above can be
replaced by a larger ordinal. To give a criteria on when this is possible,
we show that independence being finitely witnessed (see Definition 5.3)
follows from symmetry.
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Theorem 5.9. Let s be a good−St F -frame and let µ ≤ θs be a cardi-
nal. If s<µ has symmetry, then µ-independence in s is finitely witnessed.

Proof. By Theorem 5.7 s has µ-symmetry of independence, and by
Corollary 4.10 s<µ has continuity. Let M0 ≺ M ≺ N be in KF and
let I ⊆ N be such that |I| < µ. Assume that every finite subset of
I is independent in from M over M0 in N . Assume inductively that
µ0-independence is finitely witnessed for all µ0 < µ. Let µ0 := |I| and
write {ai : i < µ0}. Let Ii := {ai : j < i}. By the induction hypothesis,
Ii is independent from M over M0 in N for all i < µ0. By µ-symmetry
of independence, the ordered sequence 〈aj : j < i〉 is independent from
M over M0 in N . By continuity of s<µ, 〈ai : i < µ0〉 is independent
from M over M0 in N . Thus I is independent from M over M0 in N ,
as desired. �

Remark 5.10. A similar proof shows that the ordered version of µ-
independence being finitely witnessed (that is, a sequence is indepen-
dent if and only if all of its finite subsequences are) is equivalent to
symmetry in s<µ.

Next, we show symmetry indeed holds in the elongation if the orig-
inal frame is “sufficiently global” (this does not even use that s has
symmetry):

Lemma 5.11. Assume s is a good− F -frame and F = [λ, θ). If θ ≥
i

(2λ)
+ , then s<λ

+

λ has symmetry.

Proof. Using uniqueness and local character, it is straightforward to
see that KF is stable in 2λ (for 1-types), see e.g. [Vas16b, Proposition
6.4]. By Fact 2.5 this means KF is stable in 2λ for λ-types. Then the
same nonstructure proof as [Vas16b, Corollary 6.11] generalizes: if s
does not have symmetry, then the same proof as [BGKV16, Theorem
5.14] shows that KF has an order property, and this order property is
enough to deduce instability in 2λ for λ-types (see [She99, Section 4]
or [BGKV16, Fact 5.13] for a sketch). �

Note, by uniqueness and local character, if χ := tb1
λ := supM∈Kλ |S(M)|,

and s is a good− [λ, χ]-frame, then sχ will satisfy bs-stability (and hence
be a good−S-frame); see [Vas16b, Proposition 6.4].

We now apply the lemma to the maximal elongation of a (≥ λ)-frame
s, namely s<∞ := ∪α∈ONs

<α.

Corollary 5.12. Assume s is a good− (≥ λ)-frame. Then s<∞ has
symmetry.
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Proof. Use Lemma 5.11 with each λ′ ∈ [λ,∞). �

Corollary 5.13. Assume s is a good−S [good−] (≥ λ)-frame. Then
s<∞ is a good [good−St] (<∞,≥ λ)-frame.

Proof. Combine Corollary 4.12 and Corollary 5.12. �

6. Applications

This section gives some applications of these results.

6.1. Dimension. In [She09, Definition III.5.12], Shelah introduced a
notion of dimension based on a frame. In [She09, Conclusion III.5.14],
he shows that this notion is well-behaved (in the sense of Corollary 6.1)
from an assumption that is a little stronger than s being weakly success-
ful and Jarden and Sitton [JS12, Theorem 1.1] reduce this assumption
to just assuming the good−St λ-frame has the unordered continuity
property. A corollary of our results on symmetry and independence
being finitely witnessed is that we can remove any extra hypothesis.

Corollary 6.1. Let s be a good−St λ-frame and assume s<λ
+

has sym-
metry. Let M ≺M0 ≺ N be in Kλ. If:

(1) P ⊆ Sbs(M0)
(2) I1, I2 are each ⊆-maximal sets in

{I : I is independent from M0 over M in N and a ∈ I ⇒ tp(a/M0;N) ∈ P}
(3) One of I1, I2 is infinite.

Then I1 and I2 are both infinite and |I1| = |I2|.

Proof. Since Symmetry holds, independence in s is finitely witnessed by
Theorem 5.9. Recalling Remark 5.5, the hypotheses of [JS12, Theorem
1.1] hold, and the conclusion is this result. �

This dimension–defining dim(P,N) to be the single infinite size of a
I1 from Corollary 6.1–is used to develop the theory of regular types
in [She09, Section III.10]. As it stands, there is no known example
showing that symmetry is necessary to develop a dimension theory
(or a theory of regular types). In fact, there is no known example
of a good−-frame which fails to have symmetry (i.e. it is not known
whether symmetry follows from the other axioms of a good frame,
although we suspect it does not). However, the fact that this definition
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compares independent sets rather than sequences implicitly assumes
the symmetry of independence (see Theorem 5.7).

6.2. Tameness and extending frames revisited. Recall the defi-
nition of tameness from Definition 2.2. The first author [Bon14a] first
studied the connection between tameness and frames. As in [Bon14a,
Theorem 3.2], having a frame that spans multiple cardinals already
gives some tameness.

Proposition 6.2. Assume s := (K,^,Sbs) is a good− F -frame. Let
F := [λ, θ).

For each α < θ, K is (λ + |α|, < θ)-tame for the basic types of s<θ of
length ≤ α.

Proof. Let α < θ, and let p, q ∈ S≤α,bs(M) be distinct. By the moreover
part of Theorem 4.7.(1), one can find M0 ≺ M in K≤λ+|α| such that
both p and q do not fork over M0. By uniqueness, we must have
p �M0 6= q �M0, as needed. �

In [Bon14a], the main concern was using λ-tameness to extend a λ-
frame to a (≥ λ)-frame. The definition of the extension and the preser-
vation of several properties were already done by Shelah.

Definition 6.3 (Going up, Definitions II.2.4 and II.2.5 of [She09] ).
Let s := (K,^,Sbs) be a pre-(< α, λ)-frame, and let F = [λ, θ) be an
interval of cardinals as usual. Define sF := (K,^

F
, Sbs
F ) as follows:

• For M0 ≺ M1 ≺ N in KF and ā ∈ <αN , ^
F

(M0,M1, ā, N)

if and only if there exists M ′
0 ≺ M0 in Kλ such that for all

M ′
0 ≺ M ′

1 ≺ N ′ ≺ N with ā ∈ N ′, and M ′
1, N ′ in Kλ, we have

ā
N ′

^
M ′0

M ′
1.

• For M ∈ KF and p ∈ S<α(M), p ∈ Sbs
F (M) if and only if

there exists N � M and ā ∈ N such that p = tp(ā/M ;N) and

^
F

(M,M, ā,N).

Fact 6.4. Let s be a good− λ-frame, and let F = [λ, θ) be an in-
terval of cardinals as usual. Then sF satisfies all the properties of a
good F -frame except perhaps bs-stability, existence, uniqueness, and
symmetry.

Proof. See [She09, Section II.2]. �
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Transferring the rest of the properties from a good λ-frame to a good
[λ, λ+]-frame was the project of the rest of [She09, Section II] and in-
volved combinatorial set-theoretic hypotheses and shrinking the AEC
under consideration. [Bon14a] replaced these assumptions with tame-
ness.

Fact 6.5 (Theorem 8.1 in [Bon14a]). Let s be a good− [good−S] λ-
frame, and let F = [λ, θ) be an interval of cardinals where θ > λ can
be ∞. If KF has amalgamation and no maximal models, the following
are equivalent:

(1) K is λ-tame for the basic types of sF .
(2) sF is a good− [good−S] F -frame.

Moreover, if s has symmetry and K is (λ, θ)-tame for 2-length types,
then sF has symmetry. In this case, the no maximal models hypothesis
is not needed.

A surprising feature of this result is that, although the frames involved
only 1-types, the proof required tameness for longer types. This is con-
nected to an emerging divide in the literature on tameness: although
Grossberg and VanDieren’s initial definition for tameness [GV06b] in-
cluded the length of types, their categoricity transfer [GV06c, GV06a]
and several subsequent works (e.g. [BKV06, Lie13])) required only
tameness for 1-types. However, later works, beginning with Boney and
Grossberg [BG] and Vasey [Vas16a] (begun after the initial submission
of this paper), began to use tameness for longer types (and stronger
locality properties like type shortness) in essential ways. It remains to
be seen which version of tameness is the “proper one” for developing
classification theory (or indeed if they are the same under some rea-
sonable hypothesis). However, Fact 6.5 seemed to straddle this divide:
it used more than tameness for 1-types, but not much more and it was
unclear if the use was essential.

By using the results of this paper, we are able to remove the assumption
of tameness for 2-types in the proof of symmetry and show that the
use was unnecessary. We know that the tameness for 1-types gives
uniqueness for the extension sF , and that this uniqueness transfers to
uniqueness for the elongation of sF . Thus, it suffices to show that
the 2-types considered in the proof of symmetry are basic in this sense,
which we do in Theorem 6.8. Before we do this, we must be careful that
the order does not matter, i. e., that extending and then elongating a
frame gives you the same result as elongating and then extending it.
One direction is easy.
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Proposition 6.6. Let s := (K,^,Sbs) be a pre-λ-frame, and let
F := [λ, θ) be an interval of cardinals as usual. Assume KF has amal-
gamation. Then:

(sF)<λ
+

⊆
(
s<λ

+
)
F

Where ⊆ is taken componentwise.

Proof. Assume we know that ^
(sF )<λ+

(M0,M, ā, N). We show that ^
(s<λ+ )F

(M0,M, ā, N).

The proof of inclusion of the basic types is completely similar.

Let ā := 〈ai : i < β〉, for β < λ+. By assumption, ā is indepen-
dent (with respect to ^

F
) from M over M0 in N . Fix 〈M i : i ≤ β〉

and N+ witnessing the independence. In particular, for every i <
β, ^

F
(M0,M

i, ai, N
+). By definition of ^

F
, this implies in particu-

lar that for each i < β, there exists M0
i ≺ M0 in Kλ such that

^
F

(M0
i ,M

i, ai, N
+). Using the Löwenheim-Skolem axiom and the fact

that |β| ≤ λ, we can choose M∗ ≺M0 in Kλ such that for all i < β,we
have M0

i ≺ M∗. Thus, ^
F

(M0,Mi, ai, N
+) for all i < β. In particular,

ā is independent (with respect to ^
F

) from M over M∗ in N .

Now fix any M ′
0, N

′ ∈ Kλ such that ā ∈ N ′, M∗ ≺ M ′
0 ≺ M , and

M ′
0 ≺ N ′ ≺ N . We claim that ā is independent (with respect to ^)

from M ′
0 over M∗ in N ′, i.e.

<λ+

^ (M∗,M ′
0, ā, N

′). To see this, construct
〈M ′

i ∈ Kλ : i ≤ β〉 increasing continuous such that for all i ≤ β,
M∗ ≺ M ′

i ≺ M i and ai ∈ M ′
i+1. Finally, pick (N+)′ ∈ Kλ such that

M ′
β, N

′ ≺ (N+)′ ≺ N+. Then 〈M ′
i : i ≤ β〉 and (N+)′ witness our

claim. By definition, this means exactly that ^
(s<α)F

(M0,M, ā, N), as

needed. �

The converse needs more hypotheses and relies on Corollary 4.12:

Theorem 6.7. Let s := (K,^,Sbs) be a good− λ-frame, and let F :=
[λ, θ) be an interval of cardinals as usual. Assume that sF is a good−

F -frame. Then:

(sF)<λ
+

=
(
s<λ

+
)
F
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Proof. By Proposition 6.6 and existence, it is enough to show ^
(s<λ+ )F

⊆

^
(sF )<λ+

. Assume ^
(s<λ+ )F

(M,N, ā, N̂). By definition of ^
(s<α)F

and mono-

tonicity, we can assume without loss of generality that M ∈ Kλ. We

know that for all N ′ ≺ N and N̂ ′ ≺ N̂ in Kλ with M ≺ N ≺ N̂ ′ and
ā ∈ N̂ ′, ā is independent (with respect to ^) from N ′ over M in N̂ ′.
We want to see that ā is independent (with respect to ^

F
) from N Over

M in N̂ .

Let µ ≥ λ be such that N, N̂ ∈ K≤µ. Work by induction on µ. We
already have what we want if µ = λ, so assume µ > λ. Let (Ni)i≤µ be
an increasing continuous resolution of N such that Nµ = N , N0 = M ,
‖Ni‖ = λ+ |i|.
By the induction hypothesis and monotonicity, ā is independent (with

respect to ^
F

) from Ni over M in N̂ for all i < µ. In other words, for

any i < µ, tp(ā/Ni; N̂)) does not fork (in the sense of (sF)<λ
+

) over

M . By Corollary 4.12, we know that (sF)<λ
+

has continuity. Thus

tp(ā/N ; N̂) also does not fork (in the sense of (sF)<λ
+

) over M . This
is exactly what we needed to prove. �

We can now prove an abstract symmetry transfer that does not mention
tameness.

Theorem 6.8. Assume s is a good− F -frame. Let F := [λ, θ).

Then s has symmetry if and only if sλ has symmetry.

Proof. Of course, symmetry for s implies in particular symmetry for
sλ. Now assume symmetry for sλ.

First note that s = (sλ)F . This is because by the methods of [She09,
Section II.2] (see especially Claim 2.14 and the remark preceding it),
there is at most one good− F -frame extending sλ, and it is given by
(sλ)F if it exists.

Let t := sλ := (K,^,Sbs). Thus s = tF . Recall that [Bon14a, Theorem
6.1] proves symmetry for s assuming (λ,< θ)-tameness for 2-types. We
revisit this proof and use the same notation.

Suppose ^
F

(M0,M2, a1,M3), a2 ∈ M2 with tp(a2/M0;M3) ∈ Sbs
F (M0).

Let M0 ≺ M1 ≺ M3 be a model containing a1. By existence, there is
M ′

3 �M3 and a′ ∈M ′
3 such that^

F
(M0,M1, a

′,M ′
3) and tp(a′/M0;M ′

3) =
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tp(a2/M0;M3). Boney argues it is enough to see that p := tp(a1a2/M0;M3) =
tp(a1a

′/M0;M ′
3) =: p′, shows that this equality holds for all restrictions

to models of size λ, and then uses tameness for 2-types. This is not
part of our hypotheses, but by Proposition 6.2, it is enough to see that
p, p′ are basic types of s≤2.

First, let us see that a1a2 is independent (with respect to ^
F

) from M0

over M0 in M3. The increasing chain (M0,M2,M3) witnesses that a2a1

is independent (with respect to ^
F

again) from M0 over M0 in M3. Thus

tp(a2a1/M0;M3) ∈ Sbs
s≤2(M0), and s≤2 = (tF)≤2 =

(
t≤2
)
F by Theorem

6.7. Thus there exists M ′
0 ≺ M0 in Kλ such that for all M ′′

0 � M ′
0 in

Kλ with M ′′
0 ≺M3, tp(a2a1/M

′′
0 ;M3) does not fork (in the sense of t≤2)

over M ′
0. Since we have symmetry in t, we have (by Fact 5.2) that also

tp(a1a2/M
′′
0 ;M3) does not fork over M ′

0 for all M ′′
0 � M ′

0, M ′′
0 ≺ M3

in Kλ. Thus by definition and Theorem 6.7 again, a1a2 is independent
(with respect to ^

F
) from M0 over M0 in M3, as needed. Similarly,

(M0,M1,M
′
3) witnesses that a1a

′ is independent from M0 over M0 in
M ′

3. Thus p and p′ are basic types of s≤2, as needed. �

We can now prove the desired improvement.

Corollary 6.9. Let s := (K,^,Sbs) be a good λ-frame, and let F :=
[λ, θ) be an interval of cardinals, where θ > λ is either a cardinal or∞.
Assume KF has amalgamation and K is (λ,< θ)-tame. Then sF is a
good F -frame.

Proof. By the proof of Fact 6.5, sF has all the properties of a good
frame, except perhaps no maximal models and symmetry. Symmetry
follows from the previous theorem and [Bon14a, Theorem 7.1] now gives
us no maximal models. �

While we were writing up this paper, Adi Jarden [Jar16] independently
gave this improvement, with the additional hypothesis that the frame
was weakly successful (which he used to get the λ+-continuity of serial
independence property; see Remark 4.11).

6.3. Conclusion. We conclude by summarizing what our results give
from a good frame, amalgamation, and tameness:

Corollary 6.10. Let s := (K,^,Sbs) be a good λ-frame. If K≥λ has
amalgamation and is λ-tame, then:
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(1) s≥λ is a good (≥ λ)-frame, and in fact even t := (s≥λ)
<∞ is a

good (<∞,≥ λ)-frame.
(2) For all α, K is (λ+ |α|)-tame for the basic types of t of length
≤ α.

(3)
(
s<λ

+
)
≥λ

= (s≥λ)
<λ+ .

(4) t has symmetry of independence and independence in s≥λ is
finitely witnessed.

(5) We have a well-behaved notion of dimension: For M ≺M0 ≺ N
in Kλ, if:
(a) P ⊆ Sbs(M0)
(b) I1, I2 are ⊆-maximal sets in

{I : I is independent from M0 over M in N and a ∈ I ⇒ tp(a/M0;N) ∈ P}
(c) One of I1, I2 is infinite.

Then I1 and I2 are both infinite and |I1| = |I2|.

Proof.

(1) s≥λ is a good (≥ λ)-frame by Corollary 6.9. t is a good (<∞,≥
λ)-frame by Corollary 5.13.

(2) By Proposition 6.2.
(3) By Theorem 6.7.
(4) By Theorem 5.7, Proposition 5.9, and Corollary 5.12.
(5) By Corollary 6.1.

�
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[GIL02] Rami Grossberg, José Iovino, and Olivier Lessmann, A primer of simple
theories, Archive for Mathematical Logic 41 (2002), no. 6, 541–580.

[GL00] Rami Grossberg and Olivier Lessmann, Dependence relation in prege-
ometries, Algebra Universalis 44 (2000), 199–216.

[Gro02] Rami Grossberg, Classification theory for abstract elementary classes,
Contemporary Mathematics 302 (2002), 165–204.

[GV06a] Rami Grossberg and Monica VanDieren, Categoricity from one succes-
sor cardinal in tame abstract elementary classes, Journal of Mathemat-
ical Logic 6 (2006), no. 2, 181–201.

[GV06b] , Galois-stability for tame abstract elementary classes, Journal
of Mathematical Logic 6 (2006), no. 1, 25–49.

[GV06c] , Shelah’s categoricity conjecture from a successor for tame ab-
stract elementary classes, The Journal of Symbolic Logic 71 (2006),
no. 2, 553–568.

[HL02] Tapani Hyttinen and Olivier Lessmann, A rank for the class of ele-
mentary submodels of a superstable homogeneous model, The Journal of
Symbolic Logic 67 (2002), no. 4, 1469–1482.

[HS90] Bradd Hart and Saharon Shelah, Categoricity over P for first order T or
categoricity for φ ∈ Lω1,ω can stop at ℵk while holding for ℵ0, . . . ,ℵk−1,
Israel Journal of Mathematics 70 (1990), 219–235.

[Jar16] Adi Jarden, Tameness, uniqueness triples, and amalgamation, Annals
of Pure and Applied Logic 167 (2016), no. 2, 155–188.

[JS12] Adi Jarden and Alon Sitton, Independence, dimension and continuity
in non-forking frames, The Journal of Symbolic Logic 78 (2012), no. 2,
602–632.

[JS13] Adi Jarden and Saharon Shelah, Non-forking frames in abstract elemen-
tary classes, Annals of Pure and Applied Logic 164 (2013), 135–191.

[Lie13] Michael J. Lieberman, Rank functions and partial stability spectra for
tame abstract elementary classes, Notre Dame Journal of Formal Logic
54 (2013), no. 2, 153–166.

[MS90] Michael Makkai and Saharon Shelah, Categoricity of theories in Lκ,ω,
with κ a compact cardinal, Annals of Pure and Applied Logic 47 (1990),
41–97.

[She90] Saharon Shelah, Classification theory and the number of non-isomorphic
models, 2nd ed., Studies in logic and the foundations of mathematics,
vol. 92, North-Holland, 1990.

[She99] , Categoricity for abstract classes with amalgamation, Annals of
Pure and Applied Logic 98 (1999), no. 1, 261–294.

[She09] , Classification theory for abstract elementary classes, Studies in
Logic: Mathematical logic and foundations, vol. 18, College Publica-
tions, 2009.

[Vasa] Sebastien Vasey, Quasiminimal abstract elementary classes, Preprint.
URL: https://arxiv.org/abs/1611.07380v3.

http://arxiv.org/abs/1607.03885v2
https://arxiv.org/abs/1611.07380v3


36 WILL BONEY AND SEBASTIEN VASEY

[Vasb] , Shelah’s eventual categoricity conjecture in universal classes:
part I, Preprint. URL: http://arxiv.org/abs/1506.07024v10.

[Vasc] , Shelah’s eventual categoricity conjecture in universal classes.
Part II, Selecta Mathematica, To appear. URL: http://arxiv.org/
abs/1602.02633v2.

[Vas16a] , Building independence relations in abstract elementary classes,
Annals of Pure and Applied Logic 167 (2016), no. 11, 1029–1092.

[Vas16b] , Forking and superstability in tame AECs, The Journal of Sym-
bolic Logic 81 (2016), no. 1, 357–383.

[Vas17] , Downward categoricity from a successor inside a good frame,
Annals of Pure and Applied Logic 168 (2017), no. 3, 651–692.

E-mail address: wboney@math.harvard.edu

URL: http://math.harvard.edu/~wboney/

Mathematics Department, Harvard University, Cambridge, Massachusetts,
USA

E-mail address: sebv@cmu.edu

URL: http://math.cmu.edu/~svasey/

Department of Mathematical Sciences, Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA

http://arxiv.org/abs/1506.07024v10
http://arxiv.org/abs/1602.02633v2
http://arxiv.org/abs/1602.02633v2

	1. Introduction
	2. Preliminaries
	3. Good frames
	4. Independent sequences form a good- frame
	5. Symmetry in long frames
	6. Applications
	References

