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Abstract. The third author has shown that Shelah’s eventual categoricity
conjecture holds in universal classes: class of structures closed under isomor-

phisms, substructures, and unions of chains. We extend this result to the

framework of multiuniversal classes. Roughly speaking, these are classes with
a closure operator that is essentially algebraic closure (instead of, in the uni-

versal case, being essentially definable closure). Along the way, we prove in

particular that Galois (orbital) types in multiuniversal classes are determined
by their finite restrictions, generalizing a result of the second author.
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1. Introduction

One of the most important test questions in the study of abstract elementary classes
(AECs) is Shelah’s eventual categoricity conjecture, i.e. the statement that if an
AEC is categorical in any “sufficiently large” cardinal then it must be categorical
on a tail of cardinals. This conjecture, if true, would be a generalization of Morley’s
theorem for first order theories to AECs.

An important class of AECs are the universal classes: classes of structures closed
under isomorphism, substructures and union of ⊆-increasing chains. Essentially by
a result of Tarski, universal classes are precisely the classes of models of a universal
sentence in L∞,ω (see [Tar54]).
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In a tour de force, the third author [Vas17a, Vas17b] proved Shelah’s eventual
categoricity conjecture for universal classes.

Fact 1.1 ([Vas17b, Theorem 7.3]). Let K be a universal class. If K is categorical
in some λ ≥ ii

(2|τ(K)|+ℵ0)
+ , then K is categorical in all λ ≥ ii

(2|τ(K)|+ℵ0)
+ .

In this paper, we aim to generalize this result to a larger class of AECs which we call
multiuniversal, see Definition 2.8. While there are many interesting universal classes
(locally finite groups, valued fields with fixed value group, etc.), the restrictions on
the definition of universal classes make it difficult to have universal classes that
are both mathematically interesting and model-theoretically well-behaved. Recent
work of Hyttinen and Kangas [HK] have given some confirmation of this by building
on the third author’s work to show that any universal class that is categorical in a
high-enough successor must eventually look like either naked sets or vector spaces.
The motivation for this generalization stems from the goal of slightly weakening
the notion of universal class while still maintaining many of the nice mathematical
properties of universal classes.

In aiming to generalize beyond universal classes, we took algebraically closed fields
as our prototype. Fields are easily seen to be universal classes, but are model-
theoretically intractable at that level of generality. Algebraically closed fields are
the most model-theoretically well-behaved subclass of fields, but are not univer-
sal as they are not closed under subfield. One could make them into a universal
class by expanding the language to include an n-ary function F for each n so that
F (a0, . . . , an) is a root of the polynomial a0 + · · · + anx

n. However, this choice
of root function would destroy many of the nice model-theoretic properties of al-
gebraically closed fields, e.g. the decision about whether the chosen fourth root of
2 squares to the chosen square root of 2 means that there are different complete
theories in the expansion.

One solution to this dilemma would be to allow the addition of ‘multifunctions’ to
the language, which are functions that are allowed to have a several output values
(although the number of output values is fixed by the language). Then algebraically
closed fields can be equipped with multifunctions F so that F (a0, . . . , an) picks
out the n + 1-many roots of the polynomial a0 + · · · + anx

n. While this is good
motivation, the explicit formulation of this framework is much more difficult as it
requires specifying the syntax and semantics of these new multifunctions. Instead,
we went with a definition of multiuniversal classes that more naturally fits in the
standard model theoretic framework. First, we require that a multiuniversal class
admits intersections (Definition 2.2). This is similar to having a notion of “submodel
generated by,” but doesn’t require that the submodel is generated by terms in the
language (as a universal class would). Instead, we want to think of the submodel
as closing under imagined multifunctions. One consequence of this would be that,
if x is in the closure of A, it is the image under some multifunction. Thus, the only
other elements of the closure that have the same type over A are the other finitely
many values of that multifunction. This motivates using the definition of a type
being ℵ0-algebraic (Definition 2.4). Although this seems weaker than an imagined
multifunction framework, this definition of multiuniversal class allows us to prove
nice structural results. Several examples beyond algebraically closed fields are listed
in Example 2.9. A further alternate framework is to think of multiuniversal classes
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as universal classes that take value, not in the category of set, but in the category
whose objects are sets X along with the collection of finite subsets of X.

The main result of the present paper is Corollary 4.3: Shelah’s eventual cate-
goricity conjecture holds for multiuniversal AECs. The proof goes along the same
lines as the third author’s proof of the corresponding result for universal classes
[Vas17b]. An important step is to establish that any (not necessarily categorical)
multiuniversal AEC has a strong locality property: its Galois (i.e. orbital) types are
determined by their finite restrictions. In technical jargon, multiuniversal classes
are fully (< ℵ0)-tame and type-short, see Theorem 3.3. For universal classes, this
is due to the second author and essentially follows from the fact that a partial
isomorphism from A to B can be extended uniquely to the closure of A under the
functions of the ambient model. In the setup of multiuniversal classes, there is no
longer such a unique extension (think of the case of algebraically closed fields of

characteristic zero: an automorphism of Q can be extended in two ways to Q(
√

2)).
Still given any partial isomorphism p from A to B and a in the closure of A, there
are only finitely-many extensions of p with domain dom(p) ∪ {a}. This will allow
us to prove the result with a compactness argument (using Tychonoff’s theorem).
This can also be construed as a finite-injury proof.

2. Preliminaries

We assume the reader is familiar with the basics of AECs, as covered for example
in Chapters 4 and 8 of [Bal09]. We will make heavy use of Galois (orbital) types
and use the notation from [Vas16b, §2]. In particular, we let gtp(b̄/A;N) denote
the Galois type of the sequence b̄ over A as computed inside N . We write K for an
AEC, and write ≤K for the ordering on K. When K is clear from context, we may
drop it from the name of a concept.

We begin by recalling some important properties an AEC may have. The following
is from [Vas17a, Remark 4.12]:

Definition 2.1. An AEC K has weak amalgamation if whenever gtp(a1/M ;N1) =
gtp(a2/M ;N2), there exists N ′1 ≤K N1 containing a1 and M and there exists N ≥K

N2 and f : N ′1 −→
M

N so that f(a1) = a2.

The following was introduced for AECs by Baldwin and Shelah [BS08, Definition
1.2].

Definition 2.2. Suppose that K is an AEC. For any A ⊆ N ∈ K define

clNK(A) :=
⋂
{N0 : N0 ≤K N and A ⊆ |N0|}.

Note that we will omit K when it is clear from context and we will not distinguish
between the set clN (A) the the corresponding τ(K)-structure induced from the τ(K)-
structure on N .

We say that K is an AEC with intersections (or K has intersections, or K admits

intersections) if for all N ∈ K and A ⊆ |N |, clN (A) ≤K N .

We will heavily use the following basic properties of AECs with intersections [Vas17a,
Propositions 2.14, 2.18, and Remark 4.13].
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Fact 2.3. Let K be an AEC with intersections.

(1) Let M ≤K N and let A ⊆ |M |. Then clM (A) = clN (A).

(2) (Finite character) Let M ∈ K and let a ∈ clM (B). Then there exists a

finite B0 ⊆ B such that a ∈ clM (B0).
(3) (Equality of types) Let M1,M2 ∈ K, A ⊆M1∩M2. Then1 gtp(b̄1/A;M1) =

gtp(b̄2/A;M2) if and only if there exists an isomorphism f : clM1(Ab̄1) →
clM2(Ab̄2) extending f0 such that f(b̄1) = b̄2.

(4) K has weak amalgamation.

The following essentially also appears in [She09b, Definition VI.1.15(2)].

Definition 2.4. Let µ be a (possibly finite) cardinal. A type p ∈ gS<∞(A;N) is
µ-algebraic if for any N ′ ∈ K whose universe contains A, the set of realizations of
p in N ′ has size strictly less than µ.

The following basic properties of algebraicity will be useful:

Lemma 2.5. Let K be an AEC with intersections and let p ∈ gS(A;N) be a type

realized in clN (A).

(1) For any M ∈ K containing A, if b̄ ∈M realizes p, then b̄ ∈ clM (A).
(2) For any M ∈ K, if p is realized in M , then p has as many realizations in

M as in N .

Proof. Write p = gtp(ā/A;N). For the first item, if b̄ realizes p, then there is an

isomorphism f : clN (Aā) ∼=A clM (Ab̄) such that f(ā) = b̄. But clN (Aā) = clN (A)

by assumption, so clM (Ab̄) = clM (A) and b̄ ∈ clM (A).

For the second item, suppose that b̄ ∈ M realizes p. Then b̄ ∈ clM (A) by the

first item and there exists an isomorphism f : clN (A) ∼=A clM (A) sending ā to b̄.

Without loss of generality, N = clN (A) and M = clM (A). Now as f is a bijection,
it must send distinct realizations of p in N to distinct realizations of p in M and
vice-versa. The result follows. �

Lemma 2.6. Let K be an AEC with intersections. If p ∈ gS(A;N) is µ-algebraic,
then there exists µ0 < µ such that p is µ+

0 -algebraic.

Proof. By Lemma 2.5. �

Lemma 2.7. Let K be an AEC with intersections. Let M ∈ K and let A ⊆ |M |.
Let b̄ ∈ α(clM (A)). Let p := gtp(b̄/A;M). Then p is (LS(K) + α)

+
-algebraic.

Proof. Pick A0 ⊆ A such that |A0| ≤ α+ℵ0 and b̄ ∈ clM (A0). Let M0 := clM (A0).
By Lemma 2.5, p � A0 is ‖M0‖+-algebraic. Now any element realizing p in M must
realize p � A0, so p is also ‖M0‖+-algebraic. Since ‖M0‖ ≤ LS(K) + α, the result
follows. �

Using algebraicity, we can give a semantic definition of multiuniversal classes:

1Note that by itself the statement “A ⊆ M1 ∩M2” is somewhat meaningless: the set A may
be embedded in a different way inside M1 and M2. However both sides of the characterization of

equality of types imply that A is embedded in the same way in M1 and M2.
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Definition 2.8. Let K be an AEC and let µ be a (possibly finite) cardinal. We say
that K is µ-multiuniversal if it admits intersections and for any M ∈ K, any A ⊆
|M |, and any b ∈ clM (A), gtp(b/A;M) is µ-algebraic. We call K multiuniversal if
it is ℵ0-multiuniversal.

Note that 2-multiuniversal corresponds to universal (up to definable expansion of
the vocabulary), see [LRV, Theorem 2.8]. Similarly, we could have defined precisely
what is meant by a multifunction, and then defined a multiuniversal class to be a
class of structures closed under isomorphisms, unions of increasing chains, and so
that substructures are in a certain sense closed under multifunctions. We could
then have shown that starting with a multiuniversal class in the sense of Definition
2.8, one adds a relation symbol for every Galois type of finite length, and then adds
“Skolem multifunctions” to then get a multiuniversal class in the syntactic sense.
We do not adopt this approach, since it is easier to work with multiuniversal classes
semantically anyway.

Example 2.9.

(1) Let K be an AEC with intersections. Then K is LS(K)+-multiuniversal by
Lemma 2.7.

(2) Any universal class is a multiuniversal AEC.
(3) Let T be a first-order theory with quantifier elimination. Let K be the

class of all algebraically closed subsets of models of T , ordered by being a
substructure. Then K is a multiuniversal AEC.

(4) Any AEC with intersections in which the closure operator is locally finite
(i.e. the closure of any finite set is finite) is a multiuniversal AEC, see
[BKL17] for a discussion of locally finite AECs.

(5) The AEC K of algebraically closed fields (ordered by subfield) is a multiu-
niversal AEC which is not a universal class.

(6) Let K be the class of pairs (A,E), where E is an equivalence relation on A,
each of whose classes are countably infinite. Order it by the relation “equiv-
alence classes do not grow”. The resulting AEC K is sometimes called the
toy quasiminimal class. It is easy to check that K has intersections but is
not ℵ0-multiuniversal.

(7) Let K be the class of algebraically closed valued fields of rank one (that
is, the valuation embeds into a subgroup of the reals). We code this by
adding a constant symbol for every real number in the vocabulary. Then K
is a multiuniversal AEC. Moreover, K is not axiomatizable by a first-order
theory.

(8) Recall that a graph is locally finite if all its vertices have finite degree. Let
K be the class of locally finite graphs, and make it into an AEC K by
ordering it with G ≤K H if and only if G is a subgraph of H and if v is
in H and there is an edge from v to G, then v ∈ G (that is, any connected
component of G in H is G). Note that K admits intersections, is not first-
order-axiomatizable, and is multiuniversal. Indeed, let M ∈ K, A ⊆ |M |,
and b ∈ clM (A). Let A0 ⊆ A be finite such that b ∈ clM (A0) (Fact 2.3).
It suffices to see that p := gtp(b/A0;M) is ℵ0-algebraic. Note that b is
connected to A0 and the length n of the smallest path from A0 to b is part
of the information carried by the type of b over A. Now since M is locally
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finite, there are finitely-many vertices in M at distance at most n from A0,
and only those could realize p, so p is indeed ℵ0-algebraic.

(9) Let τ consist of unary predicates P and Q, of a binary relation E, and of
binary relations 〈Rm : m ∈ [2, ω)〉. We let K be the class of τ -structures
M such that:
(a) PM ∪QM = M , PM ∩QM = ∅, EM ⊆ PM ×QM . We think of QM as

a set of subsets of PM and of EM as being the membership relation.
(b) For each s ∈ QM , there exists at least one but only finitely-many x ∈

PM such that xEMs. We let n(s) be |{x ∈ PM | xEMs}|. Intuitively,
QM consists of finite non-empty subsets of PM , and n(s) denotes the
cardinality of the set coded by s.

(c) If xEMs and xEMs′, then s = s′. That is, there is at most one set
containing each element.

(d) For each x ∈ PM , there exists s ∈ QM such that xEMs. That is, each
element is contained in at least one set. This and the previous axioms
imply that QM codes a partition of PM consisting of finite sets.

(e) For each m ∈ [2, ω), Rm is the graph of a bijection from {s ∈ QM |
n(s) = 1} onto {s ∈ QM | n(s) = m}. Thus Rm witnesses that in the
partition there are as many sets with m elements as with one element.

We make K into an AEC K by ordering it by M ≤K N if and only if
M ⊆ N , and the sets do not grow: xENs implies that x ∈ N\M if and
only if s ∈ N\M (in particular the value of n(s) is the same in N and
M). Then K has intersections and K is a multiuniversal AEC (because,

in a nutshell, clM (A) adds only one set of each cardinality, and each such
set has finitely-many elements). Moreover K is categorical in every infinite
cardinal and is not first-order axiomatizable. Note also that K is not a
universal class (because for a fixed s the elements x such that xEs all have
the same type).

(10) Let K be a universal class of abelian groups such that each group has finitely
many n-torsion elements for every n < ω (and non-trivial n-torsion for at
least one n). For example, the class of groups of the form G × Zn, where
G is abelian torsion-free and Zn is the cyclic group of order n (coded by
constant symbols in the language).

Let Kdiv be the class of consisting of the injective envelopes (generated
divisible extensions) of groups in K. Then Kdiv is not a universal class
because there is no function that takes an element g to its divisors. However,
the number of values for g

n is precisely equal to the amount of n-torsion in

the group. Thus, Kdiv is a multiuniversal class.
If the original class K instead had n-torsion that was bounded above by

µ, then the resulting class K would be µ+-multiuniversal.

The following notation for certain threshold cardinals that come up often in the
theory of AECs will be used:

Definition 2.10. For a cardinal µ, we set h(µ) := i(2µ)+ . There will be a cardinal,

h(K) associated to an AEC which will be important. We refer the reader to [Vas17b,
Definition 2.16] for a precise definition but note this cardinal satisfies iLS(K)+ ≤
h(K) ≤ h(LS(K)).
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3. Some model theory of multiuniversal AECs

3.1. Tameness and multiuniversal AECs. It is natural to ask when a Galois
type is determined by its restriction to small subsets. One can also ask when a
type of a sequence is determined by its restriction to small subsequences. In the
literature, the former property is called tameness [GV06] and the latter is called
type-shortness [Bon14, Definition 3.3]. We amalgamate these two properties into
one definition here:

Definition 3.1. For κ an infinite cardinal, an AEC K is (< κ)-short if for
any N1, N2 ∈ K and any ordinal α, if for ` = 1, 2, ā` ∈ αN` are such that
gtp(ā1 � I/∅;N1) = gtp(ā2 � I/∅;N2) for all I ⊆ α of size strictly less than κ,
then gtp(ā1/∅;N1) = gtp(ā2/∅;N2).

Remark 3.2. If K is (< κ)-short, then [Bon14, Theorem 3.5] K is fully (< κ)-
tame and short over every set. That is, for any N1, N2 ∈ K, any A ⊆ |N1| ∩ |N2|,
and any ordinal α, if for ` = 1, 2, ā` ∈ αN` are such that gtp(ā1 � I/A0;N1) =
gtp(ā2 � I/A0;N2) for all I ⊆ α and all A0 ⊆ A both of size strictly less than κ,
then gtp(ā1/A;N1) = gtp(ā2/A;N2).

The second author has shown that, for any AEC K, if κ > LS(K) is strongly
compact, then K is (< κ)-short [Bon14, Theorem 4.5]. Further, one can show in
ZFC that universal classes are (< ℵ0)-short due to the unique generating notion
of closure under substructure (this appears as [Vas17a, Theorem 3.7] but is due to
the second author). The notion of closure in multiuniversal classes is not as well
behaved, but we show here that multiuniversal classes are still (< ℵ0)-short. Here,

however, the argument is much more complex: an element b ∈ clM (A) cannot
necessarily be written as a term of elements from A. Even if we moved to the
formalism of “multifunction”, this writing would not be unique. Instead, we use a
sort of “finite injury” argument: given ā1 and ā2 that locally have the same type,
we look at the space of partial mappings witnessing this. As we attempt to put
the maps together, we might revise previous choices, but this revision happens only
finitely many times at each point. This finiteness comes from the ℵ0-algebraicity
of types.

Theorem 3.3. Any multiuniversal AEC is (< ℵ0)-short.

Proof. Let N1, N2 ∈ K, let ā` ∈ αN`, ` = 1, 2. Let p` := gtp(ā`/∅;N`). Assume
that pI1 = pI2 for all finite I ⊆ α (here, pI` denotes gtp(ā` � I/∅;N`)). We have

to show that p1 = p2. We will show that there is an isomorphism f : clN1(ā1) ∼=
clN2(ā2) so that f(ā1) = ā2. Let M` := clN`(ā`). For ` = 1, 2, let A` := ran(ā`),
and let f0 : A1 → A2 be the function sending ā1 to ā2.

Call a partial function f from |M1| to |M2| a (M1,M2)-mapping if for some (any)
enumeration b̄ of the domain of f , gtp(b̄/∅;M1) = gtp(f(b̄)/∅;M2). Set

P = {B ⊆ |M1| | B is finite and B ⊆ clM1(B ∩A1)}
For B ∈ P , there exists a (M1,M2)-mapping with domain B that agrees with f0

on A1 ∩ B (by the assumption that pI1 = pI2 for all finite I, using Fact 2.3); let
FB to be the collection of all such mappings. For each B ∈ P , we claim that FB
is finite. To see this, we use the multiuniversality of K: for each of the finitely



8 NATHANAEL ACKERMAN, WILL BONEY, AND SEBASTIEN VASEY

many b ∈ B ⊆ clM1(B ∩ A1), gtp(b/B ∩ A1;M1) is ℵ0-algebraic hence the set
{f(b) | f ∈ FB} must be finite (note that f [B ∩A1] = f0[B ∩A1] for all f ∈ FB).

Under the discrete topology, each FB is compact since it is finite. Thus, by Ty-
chonoff’s Theorem, F :=

∏
B∈P FB is compact when endowed with the product

topology. Now for B ∈ P , write

PB := {〈fB0
∈ FB0

: B0 ∈ P 〉 | ∀C ∈ P(B) ∩ P, fC ⊆ fB}

PB ⊆ F is not empty, as any member of FB induces an element of it. Moreover,
it is a closed subset of F . Further, the collection {PB : B ∈ P} has the finite
intersection property: for B0, B1, . . . , Bn−1 ∈ P , we have that PB ⊆

⋂
i<n PBi for

any B ∈ P extending
⋃
i<nBi. By the compactness of F , there is f̄ = 〈fB : B ∈

P 〉 ∈
⋂
B∈P PB .

We claim that f :=
⋃
B∈P fB is an isomorphism from M1 to M2 that sends ā1 to

ā2. Each b ∈ |M1| is contained in some B ∈ P , so the domain of f is |M1|. The
coherence condition on PB ensures that f is well-defined. These two conditions
combined with the definition of FB ensure that f extends f0; that is, that f sends
ā1 to ā2. Finally, f is surjective: let b′ ∈ M2. Fix A′2 ⊆ A2 finite such that

b′ ∈ clM2(A′2). Let A′1 := f−1
0 [A′2]. Let q′ := gtp(b′/A′2;M2). We know that

there exists g : clM1(A′1) ∼= clM2(A′2) such that g extends f0. Let b := g−1(b′),
q := gtp(b/A′1;M1). Let S′ be the set of all realizations of q′ in M2. Note that S′

is finite (Lemma 2.6) and contains b′. Let S be the set of all realizations of q in
M1. Note that g[S] = S′. But as g was arbitrary this implies that f [S] = S′. In
particular, b is in the range of f , as desired. �

Remark 3.4. Theorem 3.3 does not generalize to µ-multiuniversal classes: by
Example 2.9(1), any AEC K with intersection is LS(K)+-universal, but there are
numerous examples of non-tame AECs with intersections (see e.g. [BS08, BU17]).

3.2. Abstract Morleyizations. In [Vas16b, Definition 3.3], the third author in-
troduced the Galois Morleyization of an AEC. It is an expansion of the vocabulary
that adds predicates for each Galois types over the empty set (with length below
a fixed bound). Following this, we say that an AEC K is (< ℵ0)-Morleyized if for
every p ∈ gS<ωK (∅), there is a relation Rp ∈ τ(K) (of arity `(p)) such that, for each
M ∈ K, Rp(M) = p(M) (that is, Rp is realized exactly by the elements realizing
p in M). By [Vas16b, Proposition 3.5], each AEC has a functorial expansion (see
[Vas16b, Definition 3.1]) to a (< ℵ0)-Morleyized AEC. By [Vas16b, Theorem 3.16],
K is (< ℵ0)-short if and only if Galois types are quantifier-free first-order types in
the (< ℵ0)-Galois Morleyization of K. We give this conclusion a name:

Definition 3.5. We say that an AEC K has quantifier-free types if for any
N1, N2 ∈ K, A ⊆ |N1| ∩ |N2| and ā` ∈ <∞N`, ` = 1, 2, we have gtp(ā1/A;N1) =
gtp(ā2/A;N2) if and only if tpqf(ā1/A;N1) = tpqf(ā2/A;N2). Here, tpqf(ā/A;N)
denotes the first-order quantifier-free type of ā over A as computed in N .

The discussion in the previous paragraph showed:

Fact 3.6. Any (< ℵ0)-short (< ℵ0)-Morleyized AEC has quantifier-free types.
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We want to study the compactness behavior of types in AECs with quantifier-free
types. The main result is Theorem 3.8, which gives a condition under which a
strong form of finite satisfiability implies global satisfiability.

Definition 3.7. Let K be an AEC and let p(x̄) be a set of quantifier-free formulas
in τ(K).

(1) We say that p is K-satisfiable if there is M ∈ K and ā ∈ `(x̄)M such that
M |= φ[ā] for all φ ∈ p.

(2) We say that p is strongly finitely K-satisfiable if for every finite subsequence
x̄0 of x̄, p � x̄0 is K-satisfiable, where p � x̄0 denotes the set of formulas in
p whose free variables are all in x̄0.

Theorem 3.8 (Compactness theorem for AECs with quantifier-free types). Let
K be an AEC with quantifier-free types and weak amalgamation (recall Definition
2.1). Let p(x̄) be a complete set of quantifier-free formulas in τ(K). If p is strongly
finitely K-satisfiable, then p is K-satisfiable.

Note that the essential flavor of this proof is the argument that local AECs are
compact, see [Bal09, Lemma 11.5].

Proof. We work by induction. Let α := `(x̄). Without loss of generality, α is an
infinite cardinal and we have the result for all α0 < α. For I ⊆ α, write pI for
the restriction of p to formulas only using variables in {xi | i ∈ I}. Recall that we
are assuming that there is an equivalence between Galois types and quantifier-free
types, and moreover we are also assuming that each pI is complete.

Claim: For each I ⊆ α with |I| < α, there is a unique Galois type qI ∈ gSI(∅) such
that for any M ∈ K and b̄ ∈ IM , gtp(b̄/∅;M) = qI if and only if M |= ∧pI [b̄].
Proof of Claim: When I is finite, this holds by completeness and strong finite
consistency, using that every Galois type is represented by a formula. When I is
infinite, use the induction hypothesis for existence and the equivalence between
syntactic and Galois types for uniqueness. †Claim

Now we build 〈Mi : i < α〉, 〈fi,j : i < j < α〉, and 〈b̄i : i < α〉 such that for each
i ≤ j ≤ k < α:

(1) Mi ∈ K, fi,j : Mi →Mj is a K-embedding, b̄i ∈ iMi, fi,j(b̄i) = b̄j � i.
(2) fj,k ◦ fi,j = fi,k, and fi,i is the identity.
(3) gtp(b̄i/∅;Mi) = qi.

This is possible: we proceed inductively. When i = 0, this is easy. When i = j+1 is
a successor, we use the uniqueness of qj together with weak amalgamation. When
i is limit, we take direct limits and use shortness.

This is enough: the direct limit of the system is as desired. �

Remark 3.9. The prof shows that in Theorem 3.8, it is enough to assume that K
is (< ℵ0)-short only for types of length strictly less than `(p).

Corollary 3.10. Let K be an AEC with quantifier-free types and intersections.
Then any strongly finitely satisfiable complete set of quantifier-free formulas is sat-
isfiable.
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Proof. By Fact 2.3, any AEC with intersections has weak amalgamation, so the
result follows from Theorem 3.8. �

3.3. Model-completeness. Universal classes are examples of AECs whose K-
substructure relation is just substructure. Following the first-order definition, Bald-
win and Kolesnikov [BK09, Section 4] called these AECs model-complete.

Definition 3.11. An AEC K is called model-complete if for any M,N ∈ K,
M ≤K N holds if and only if M ⊆ N .

Not all model-complete AECs are universal classes (for example, algebraically closed
fields are not universal). In fact, any time that the AEC is finitary (in the sense
of Hyttinen and Kesälä [HK06]), we can expand the vocabulary to obtain a model-
complete AEC [BV, Theorem 3.14]. We will use the following special case in this
paper:

Lemma 3.12. Any AEC with quantifier-free types is model-complete.

Proof. Let K be an AEC with quantifier-free types. Let M,N ∈ K be such that
M ⊆ N . Let ā be an enumeration of M . It is enough to show that gtp(ā/∅;M) =
gtp(ā/∅;N) (then the definition of Galois types gives that M ≤K N). But this
holds because M ⊆ N and quantifier-free types are the same as Galois types. �

3.4. Isolation. An interesting feature of multiuniversal classes is that types are
isolated over finite subtypes:

Definition 3.13. Let K be an AEC and let M ∈ K. Let A,B ⊆ |M |. Let
p ∈ gS(A;M), q ∈ gS(B;M). We say that p isolates q in M if whenever p =
gtp(b̄/A;M), we have that q = gtp(b̄/B;M).

Definition 3.14. An AEC K with intersections satisfies the isolation axiom if
whenever M ∈ K, A ⊆ |M |, and b̄ ∈ <ωM is so that b̄ ∈ clM (A), then there exists
A0 ⊆ A finite such that gtp(b̄/A0;M) isolates gtp(b̄/A;M) in M .

Theorem 3.15. Any multiuniversal class satisfies the isolation axiom.

Proof. Let K be a multiuniversal class. Let M ∈ K, A ⊆ |M |, and b̄ ∈ <ωM

be such that b̄ ∈ clM (A). Let p := gtp(b̄/A;M). Fix A0 ⊆ A finite such that

b̄ ∈ clM (A0). By definition, p � A0 is ℵ0-algebraic, hence by Lemma 2.6 is (n+ 1)-
algebraic for some n < ω. Let b̄0, . . . , b̄n−1 be all the realizations of p � A0 inside M .
Now pick A1 ⊆ A finite such that A0 ⊆ A1 and for any i < j < n, gtp(b̄i/A;M) 6=
gtp(b̄j/A;M) implies that gtp(b̄i/A1;M) 6= gtp(b̄j/A1;M). This is possible by
tameness (Theorem 3.3 and Remark 3.2). Now it is easy to check that p � A1

isolates p in M . �

3.5. A topological characterization of multiuniversal classes. While this is
not needed for the rest of the paper, it is interesting to note that multiuniversal
classes can be characterized in terms of the compactness of certain automorphism
groups (we say that a group G of automorphism of a structure M0 is compact if
it is compact in the product space M0M0, where M0 itself is given the discrete
topology).
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Theorem 3.16. Let K be an AEC with intersections. The following are equivalent:

(1) K is multiuniversal.

(2) For any M ∈ K and any A ⊆ |M |, AutA(clM (A)) is compact.

(3) For any M ∈ K and any finite A ⊆ |M |, AutA(clM (A)) is compact.

Proof. It is folklore (see for example Section 4.1 of [Mac11]) that for any structure
M0 and any subset A ⊆ |M0|, the group G of automorphisms of M0 fixing A is
compact if and only if for any b̄ ∈ <ωM0, the orbit of b̄ under the action of G on
M0 is finite. We will use this throughout the proof.

• (1) implies (2): if K is multiuniversal, M ∈ K, A ⊆ |M |, M0 := clM (A),

and G := AutA(M0), then for any b̄ ∈ <ωM0, the orbit of b̄ under the
action of G on M0 must be finite because gtp(b̄/A;M) is ℵ0-algebraic by
assumption. Thus G is compact.
• (2) implies (3): trivial.

• (3) implies (1): Assume (3) and let M ∈ K, A ⊆ |M |. Let M0 := clM (A).

We need to check that any type in gS(A;M0) is ℵ0-algebraic. So let p =

gtp(b/A;M0) ∈ gS(A;M0). Fix a finite A0 ⊆ A such that b ∈ clM (A0)
(Fact 2.3). It suffices to see that p0 := gtp(b/A0;M) is ℵ0-algebraic. Let

M ′0 := clM (A0). By Lemma 2.5, M ′0 must contain all the realizations of p0.
Moreover, for any b′ ∈M ′0 of p0, there must exist an automorphism of M ′0
fixing A0 sending b′ to b (by Fact 2.3). Since G := AutA0

(M ′0) is compact
by assumption, the orbit of b under the action of G must be finite, hence
p0 is ℵ0-algebraic, as desired.

�

4. Eventual categoricity

We now come to the main result of the paper. The goal of this section is to prove
the following (recall that h(K) was defined in Definition 2.10).

Theorem 4.1. Let K be an AEC. Assume that:

(1) K has intersections (Definition 2.2).
(2) K has quantifier-free types (Definition 3.5).
(3) K satisfies the isolation axiom (Definition 3.14).

If K is categorical in some λ ≥ ih(K), then K is categorical in all λ′ ≥ ih(K).

Note that universal classes are AECs with quantifier-free types and intersections
satisfying the isolation axiom (intersections hold by [Vas17a, Example 2.6(1)], hav-
ing quantifier-free types holds by [Vas17a, Remark 3.8], and the isolation axiom
holds by Theorem 3.15). Thus Theorem 4.1 generalizes the categoricity theorem
for universal classes of the third author [Vas17b, Theorem 7.3]. In fact the proof is
essentially the same, but one has to check that everything still goes through.

It is also worth noting that while multiuniversal classes satisfy the conditions of
Theorem 4.1, there are AECs which satisfy these conditions but are not multiuni-
versal. In particular Example 2.9(6) is one such AEC.
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Theorem 4.1 also gives us our desired categoricity transfer for multiuniversal classes
as a corollary of our previous analysis.

Corollary 4.2. Let K be a (< ℵ0)-short AEC with intersections which satisfies the
isolation axiom. If K is categorical in some λ ≥ ih(2LS(K)), then K is categorical

in all λ′ ≥ ih(2LS(K)).

Proof. Morleyize by adding at most 2LS(K)-relation symbols for Galois types of
finite length (see [Vas16b, §3]). We obtain an AEC with Löwenheim-Skolem-Tarski
number at most 2LS(K) which satisfies the hypotheses of Theorem 4.1 and the
Moleyization preserves categoricity. �

Corollary 4.3. Let K be a multiuniversal AEC. If K is categorical in some λ ≥
ih(2LS(K)), then K is categorical in all λ′ ≥ ih(2LS(K)).

Proof. By definition, K has intersections. The other two conditions of Corollary
4.2 are given by Theorems 3.3 and 3.15. �

The proof of Theorem 4.1 goes along the lines of the corresponding result for uni-
versal classes proven in [Vas17b, Theorem 7.3]. We will quote and use terminology
freely from [Vas17b] (particularly Section 6) and [She09b, Section V.B]. The reader
is advised to have copies open on their desk as they read this proof, although we
will try to give a sense of the definitions used. The proof traces back to checking
that some arguments of Shelah from [She87] (we will use the revised version from
[She09b, Chapter V]) still go through in the setup of this paper.

A crucial tool in this work is the use of averages. Recall that we have moved to a
context where Galois types are quantifier-free. This allows us to make the following
definition, following [She09b, Section V.A.2]: given {b̄i | i ∈ I}, A ⊆ M and a
cardinal χ,

Avχ ({āi | i ∈ I}/A;M) := {φ(x̄, ā) | φ is quantifier free and

for all but < χ-many i, M � φ(b̄i, ā)}

Not every sequence will give rise to a complete average, but we call sequences that
do convergent (after suppressing some parameters). The main technique for finding
convergent sequences is [She09b, Theorem V.A.2.8], which says that, if the class fails
to have an appropriate order property, then any sufficiently large set of parameters
can be ‘pruned’ to a convergent subset of the same size. The assumption of no
order property follows from categoricity by [Vas17b, Lemma 7.1].

It suffices to prove [Vas17b, Fact 6.10] for classes satisfying the assumptions of
Theorem 4.1. Then the rest of the proof of [Vas17b, Theorem 7.3] is exactly the
same. More precisely, we will show:

Theorem 4.4. Let K be an AEC. Assume that:

(1) K has intersections.
(2) K has quantifier-free types.
(3) K satisfies the isolation axiom.
(4) χ ≥ LS(K) is such that K does not have the order property of length χ+.
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Set µ := 22χ and let K0 := (K,≤χ+,µ+

) (≤χ+,µ+

is the ordering defined in [She09b,
Definition V.A.4.1]: roughly it requires that M ⊆ N , and the type of any b̄ ∈ <ωN
over M is the average of some sequence from M). Then:

(1) K0 is a weak AEC with LS(K0) ≤ µ+ (this means it satisfies the axioms
of an AEC except perhaps smoothness of unions).

(2) Let clM be the closure operator on K and let ^ be the 4-ary relation defined

in the statement of [Vas17b, Fact 6.10]; the key condition is that M1

M3

^
M0

M2

implies that the Galois type of any ā ∈ M1 over M2 is the average of a
sequence from M0.
We then have that (K0,^, cl) satisfies AxFr1 (see [She09b, Definition V.B.1.6]).
Moreover,
(a) cl is algebraic (see [Vas17b, Definition 5.22]); and
(b) ^ is µ+-based (see [Vas17b, Definition 4.12]).

Proof of Theorem 4.1. By the proof of [Vas17b, Theorem 7.3], substituting Theo-
rem 4.4 to [Vas17b, Fact 6.10]. �

Proof of Theorem 4.4. That K0 is a weak AEC with LS(K0) ≤ µ+ is as in the proof
of [She09b, Lemma V.B.2.9]. Now cl is algebraic because K is model-complete (Fact
3.12). That ^ is µ+-based is proven exactly as in the proof of [Vas17b, Fact 6.10]. It
remains to see that (K0,^, cl) satisfies AxFr1. From now on, we write “convergent”
instead of “(χ+, µ+)-convergent”, “averageable” instead of “(χ+, µ+)-averageable”,
and “Av(I/A;M)” instead of “Avχ+(I/A;M)”.

For this we go through Shelah’s proof in [She09b, Lemma V.B.2.9]. A key claim
will be:

Claim: Let M0,M ∈ K with M0 ⊆ M . Let ā, b̄ ∈ <ωM be such that b̄ ∈ clM (ā)
and gtp(b̄/ā;M) isolates gtp(b̄/M0;M) in M . If tpqf(ā/M0;M) is averageable over

M0 in M , then so is tpqf(b̄/M0;M).

Proof of Claim: Note that Galois and quantifier-free types are interchangeable by
hypothesis. Let I := 〈āi : i ∈ I〉 be a sequence of elements in M0 of arity `(ā)
which is convergent such that Av(I/M0;M) = tpqf(ā/M0;M). Since I has at least

µ+-many elements, we can prune it further to assume without loss of generality
that tpqf(āi/∅;M) = tpqf(ā/∅;M) for all i ∈ I. Thus for each i ∈ I there exists

fi : clM0(āi) ∼= clM (ā) sending āi to ā. For i ∈ I, let b̄i := f−1
i (b̄). Let J := 〈b̄i :

i ∈ I〉. By pruning, we can assume without loss of generality that J is convergent.
We want to see that Av(J/M0;M) = tpqf(b̄/M0;M).

Let φ(x̄; c̄) ∈ Av(J/M0;M). This means that for all but at most χ-many i ∈ I,
M |= φ[b̄i; c̄]. Let p := tpqf(āb̄/∅;M). By construction of b̄i, p = tpqf(āib̄i/∅;M)
for all i ∈ I. Now by averageability, for most i ∈ I, tpqf(āi/c̄;M) = tpqf(ā/c̄;M).

Let gi : clM (āi) ∼=c̄ clM (ā) send āi to ā, and let b̄′ := f(b̄i). Then for all such
i, M |= φ[b̄′; c̄] ∧ p[b̄′; ā]. Thus gtp(b̄/ā;M) = gtp(b̄′/ā;M), but by isolation this
means that gtp(b̄′/M0;M) = gtp(b̄/M0;M), so in particular M |= φ[b̄; c̄], as desired.
†Claim
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We now prove all the axioms from [She09b, Section V.B.§1]. Clearly, ^ and cl
are preserved under isomorphisms and the axioms from group A hold. By Fact
2.3, the finite character axiom C.7 holds, as do the axioms from group B. Thus as
in the proof of [She09b, Lemma V.B.2.9], it suffices to show [She09b, Sublemmas
V.B.2.10-2.13].

(1) Existence (axiom C2): Let M0 ≤K0 M`, ` = 1, 2. First, we build M3 ∈ K0

and K-embeddings f` : M` →M3 for ` = 1, 2 such that
(a) f1 �M0 = f2 �M0;

(b) f1[M1]
M3

^
f1[M0]

f2[M2]; and

(c) M3 = clM3 (f1[M1] ∪ f2[M2]).
Note that we do not claim that the f` are K0-embeddings, although this
will follow from (4) and Symmetry below.

Let λ := ‖M1‖ + ‖M2‖ + ℵ0. For ` = 1, 2, let c̄` := 〈c`i : i < λ〉 be an
enumeration (possibly with repetitions) of M`. For u ⊆ λ, write c̄`u for c̄` �
u. For each finite u ⊆ λ, by definition of ≤K0 , there is a convergent sequence
Iu inside M0 such that tpqf(c̄

1
u/M0;M1) = Av(Iu/M0;M1). Let qu :=

Av(Iu/M2;M2), seen as a type in the variables x̄1
u := 〈x1

i : i ∈ u〉. Now let
pu be the set of quantifier-free formulas φ(x̄1

u; x̄2
u) such that φ(x̄1

u; c̄2u) ∈ qu.
Let p :=

⋃
u∈[λ]<ℵ0 pu. Note that p is complete as a quantifier-free type.

Now, for each finite u ⊆ λ, pu contains at most (|τ(K)| + ℵ0)-many
formulas and Iu has the much bigger size µ+. Moreover for each φ ∈ pu,
all but fewer than µ+-many elements of Iu satisfy φ(x̄1

u; c̄2u). It follows that
pu is realized in M2. Thus p is strongly finitely K-satisfiable. By Corollary
3.10, p is K-satisfiable. Let d̄1d̄2 realize p (where d̄` realize p � x̄`) inside

some M ∈ K. Let M3 := clM (d̄1d̄2). Now the formula “x̄1
u = x̄2

v” is in p
whenever c̄1u = c̄2v are in M0. Moreover, tpqf(d̄

`/∅;M3) = tpqf(c̄
`/∅;M1).

Since Galois and quantifier-free types are the same (in K), sending c̄` to d̄`

is a K-embedding f` : M` →M3 and f1 �M0 = f2 �M0. By construction,

f1[M1]
M3

^
f1[M0]

f2[M2].

(2) Uniqueness (axiom C5): By [She09b, Claim V.A.4.6(2)], the fact that
quantifier-free types are the same as Galois types, and the argument in
[Vas16a, Lemma 12.6].

(3) Symmetry (axiom C6): Exactly as in [She09b, Sublemma V.B.2.11].

(4) If M1

M3

^
M0

M2, then M2 ≤K0 M3 ([She09b, Claim V.B.2.12]): By definition

of ^ and transitivity of ≤K0 we can assume without loss of generality that
M3 = clM3(M1 ∪M2). Let b̄ ∈ <ωM3. We have to see that tpqf(b̄/M2;M3)
is averageable over M2. By the isolation axiom, there is a finite A ⊆ |M1|∪
|M2| such that tpqf(b̄/M2;M3) is isolated by tpqf(b̄/A;M3) in M3. Let ā be
an enumeration of A. By the Claim, it suffices to see that tpqf(ā/M2;M3)

is averageable over M2 in M3. Now by definition of ^, tpqf(ā/M2;M3) is
averageable over M0, hence over M2, as desired.
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(5) Base enlargement (axiom C4): Assume M1

M3

^
M0

M2 and M0 ≤K0 M ′2 ≤K0

M2. We want to see that clM3(M ′2 ∪ M1)
M3

^
M ′

2

M2. Now by monotonicity

we know that M1

M3

^
M0

M ′2, hence by definition of ^ and the previous part

M ′2 ≤K0 clM3(M ′2 ∪M1). Also, clM3(clM3(M ′2 ∪M1) ∪M2) = clM3(M1 ∪

M2) ≤K0 M3 by definition of ^ and the assumption that M1

M3

^
M0

M2. It

remains to see that for any c̄ ∈ <ω clM
′
2∪M1 , tpqf(c̄/M2;M3) is averageable

over M ′2.

First we show the transitivity property of ^: if N1

N3

^
N0

N2 and N3

N5

^
N2

N4,

then N1

N5

^
N0

N4. To see this, let b̄ ∈ <ωN1. We want to see that tp(b̄/N4;N5)

is averageable over N0, and we know that tp(b̄/N4;N5) is averageable over
N2 and tp(b̄/N2;N5) is averageable over N0. To conclude what we want,
imitate the proof of [She09a, Claim II.2.18], noting that base monotonicity
is trivial for the notion of being averageable over.

Now that we have transitivity, we can conclude base enlargement on
general grounds: as in the proof of [She09a, Claim III.9.6(E)(b)], there is

M ′1 and M ′3 such that M3 ≤K0 M ′3, M1 ≤K M ′1, and M ′1

M ′
3

^
M ′

2

M2. Now

observe that clM
′
3(M1 ∪M ′2) = clM3(M1 ∪M ′2) to conclude.

�
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